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Abstract

This thesis is based in the intersection of number theory and graph theory, introducing

a link between the Mahler measure of a polynomial and specific types of graphs, which

we refer to as digraphs. One of the main aims of this thesis is to find “small” Mahler

measure values “from” digraphs. Our other aims are to further extend our knowledge of

the digraphs presented, the theory linking Mahler measures and graphs more broadly

and, finally, understanding when polynomials may share the same Mahler measure.

As such, this thesis has two distinctive themes which are intertwined together. In

parts of the thesis, primarily Chapters 1, 3 and 6, our focus is more theoretical, and we

aim to introduce and survey existing ideas, both from the topics of Mahler measures

and digraph theory, as well as build upon these and present new concepts. Other parts,

particularly Chapters 2 and 5, are focused on calculating Mahler measure values from

a practical viewpoint, including introducing a new method for calculating the Mahler

measures of two-variable polynomials, as well as detailing how exactly we performed our

experiments.

Meanwhile, Chapter 4 is a blend of these themes: whilst it focuses on developing our

theoretical knowledge, it is done in a way to prepare us for our experiments. We round

off the thesis in Chapter 7 by summarizing potential future work.

In most circumstances, we present Mahler measure values to 8 decimal places, though

this convention is broken on occasions where appropriate.
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Chapter 1

Introduction and Motivation

In this chapter we introduce the core definitions and ideas surrounding Mahler measures,

both in one variable and in several variables. We then move on to explain our motivation

for introducing combinatorial objects, and outline the rest of thesis.

1.1 Mahler Measures and Single Variable Polynomials

Mahler measures are closely related to height functions, in that they are a way of

measuring the complexity of a polynomial. This thesis focuses on the study of them in

their own right, but there exist applications to other areas of maths, notably dynamical

systems (an overview of which can be seen in, for example, Smyth [41]).

Definition 1.1.1. The Mahler measure of a non-zero polynomial f ∈ C[x] is defined

as:

M(f) := exp

(∫ 1

0
log|f(e2πit)| dt

)
. (1.1)

That is to say that the Mahler measure of a polynomial is the “geometric mean” of

|f(z)|, for z on the unit circle.

In some situations, we may make reference to the logarithmic Mahler measure, which

is written as m(f). This is defined as one would perhaps expect: take logarithms of

both sides of the above definition, giving us m(f) = logM(f). This can sometimes be

more convenient to work with. Equally, some may define the Mahler measure as:
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M(f) := exp

(
1

2π

∫ 2π

0
log|f(eiθ)| dθ

)
.

We note that this is the same as (1.1) in Definition 1.1.1, with the substitution

θ = 2πt. Throughout this thesis, we may make use of either of these formulations when

necessary. Furthermore, any reference to the Mahler measure will specifically be referring

to M(f). If we make use of the logarithmic Mahler measure, we will make it explicit

that we are doing so.

There is, however, an alternative way to view the Mahler measure, which is perhaps

easier to visualise in practice.

Proposition 1.1.2. The Mahler measure of a single variable polynomial f(x) can be

written as:

M(f) = |an|
n∏

i=1

max{1, |αi|} , (1.2)

where an is the coefficient of the leading term and αi are the zeros of f (where a zero of

multiplicity k is counted k times).

This was, in fact, the original definition from Lehmer [17]. This means that we can

view the Mahler measure of a polynomial as the product of the absolute values of the

zeros of that polynomial which lie outside of the unit circle (multiplied by the modulus

of the lead coefficient).

To prove that this is indeed equivalent to (1.1), we need to make use of the following:

Proposition 1.1.3 (Jensen’s Formula). Let F ∈ C[z] be an analytic function for |z| ≤ r,

for some r ∈ R>0, such that F (0) ̸= 0. Let ζ1, ζ2, · · · , ζN be the zeros of F (z) such that

|ζi| ≤ r for each i (where a zero of multiplicity b is listed b times).

Then we have:

1

2π

∫ 2π

0
log|F (reiθ)| dθ = log|F (0)|+

N∑
i=1

log
r

|ζi|
.

Remark. The statement provided here is from Titchmarsh [45, p. 125], though essentially

equivalent phrasings of the statement exist elsewhere with some superficial differences.

For a particularly clear proof of Jensen’s Formula, see Spiegel [43].
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Proof of Proposition 1.1.2. Let F (z) = anz
n + an−1z

n−1 + · · · + a1z + a0 in Jensen’s

Formula, and assume that an ̸= 0 and a0 ̸= 0, meaning deg(F ) = n and F (0) ̸= 0.

We note that these assumptions are reasonable to make, since any polynomial can be

factored to this form, and we can then consider the other term (which would be a power

of z) trivially by itself. Let ζ1, · · · , ζn be the zeros of F .

Numbering these zeros appropriately, we can write them in the following way:

|ζ1| ≤ |ζ2| ≤ · · · ≤ |ζN | ≤ 1 < |ζN+1| ≤ |ζN+2| ≤ · · · ≤ |ζn| ,

for some 1 ≤ N ≤ n.

Now set r = 1 in Jensen’s Formula. This means that the integral side of the formula

is now equal to the logarithmic Mahler measure of f , m(f). As such, we now have:

m(f) = log|a0|+
N∑
i=1

log
1

|ζi|

= log
∣∣∣ a0
ζ1ζ2 · · · ζN

∣∣∣ .
We note that |a0|= |anζ1 · · · ζn|, meaning that:

m(f) = log
∣∣∣anζ1ζ2 · · · ζNζN+1 · · · ζn

ζ1ζ2 . . . ζN

∣∣∣
= log|anζN+1ζN+2 · · · ζn|

= log|an|+ log|ζN+1ζN+2 · · · ζn|

= log|an|+
n∑

i=1

log+|ζi| ,

(1.3)

where

log+ a =


max{log a, 0}, if a > 0 ,

0, if a = 0 .

We note here that since |ζ1| ≤ · · · ≤ |ζN | ≤ 1, then log+|ζj |= 0 for 1 ≤ j ≤ N ,

meaning they do not contribute to the value of m(f) in (1.3). Equally, we see that for
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a ≤ 1, exp(log+ a) = 1, since log+ a = 0 in this case.

We now take exponentials on both side of (1.3) to get:

exp(m(f)) = exp
(
log|an|+

n∑
i=1

log+|ζi|
)
,

M(F ) = |an|
n∏

i=1

max{1, |ζi|} .

By identifying F and f as the same polynomial, and rewriting the zeros as ζi = αi, this

completes the proof.

Remark. This relationship was noted by Mahler, and the proof given here was based

on work of Mahler [19] and [20].

A simple, but useful, relation regarding the Mahler measure is that it is multiplicative:

Lemma 1.1.4. For polynomials f, g ∈ C[x], M(fg) =M(f)M(g).

Proof. To make use of (1.2), we let f(x) = an
∏n

i=1(x−αi) and g(x) = bm
∏m

j=1(x−βj).

Then, we can write

fg(x) = c
∏n+m

k=1 (x− γk), where c = anbm and:

γk =


αk, for k = 1, · · · , n ,

βk−n, for k = n+ 1, · · · , n+m.

Then, we have:

M(fg) = |c|
n+m∏
k=1

max{1, |γk|}

= |anbm|

(
n∏

k=1

max{1, |γk|}

)(
n+m∏
k=n+1

max{1, |γk|}

)

= |an|

(
n∏

i=1

max{1, |αi|}

)
|bm|

 m∏
j=1

max{1, |βj |}


=M(f)M(g) .
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1.1.1 Integer and Cyclotomic Polynomials

The focus on this thesis relates mainly to integer polynomials, especially when it comes

to explicit calculations, although some of our results may be more general. As such,

unless explicitly stated, it should be assumed that any results given exist for all complex

coefficient polynomials. However, much of the study of Mahler measures has focused

specifically on integer coefficient polynomials, f ∈ Z[x], and here we outline some key

points from this specific section of study.

Definition 1.1.5. For n ≥ 1, the n-th cyclotomic polynomial, denoted by Φn(z), is

the minimal polynomial of exp(2πin ).

Definition 1.1.6. A polynomial f ∈ Z[z] is said to be Kronecker-cyclotomic if it is

the product of some number of Φn(z) and/or a power of z.

Remark. This choice of nomenclature is due to a classification from Kronecker, seen

below in Lemma 1.1.8.

Some authors may simply refer to Kronecker-cyclotomic polynomials as cyclotomic

polynomials. To avoid any confusion between ‘the’ (n-th) cyclotomic polynomial and ‘a’

cyclotomic polynomial, we instead use Kronecker-cyclotomic to create a more explicit

difference.

Lemma 1.1.7. M(Φn(z)) = 1 for n ≥ 1.

Proof. The n-th cyclotomic polynomial can be written as

Φn(z) =
∏

1<k≤n
gcd(k,n)=1

(
z − e

2πik
n

)
.

For any such k and n, it is clear that |e
2πik
n |= 1, and so M(f) = 1.

Lemma 1.1.8. M(f) = 1 if and only if f is Kronecker-cyclotomic.

Proof. We know that the Mahler measure is multiplicative. Equally, it is easy to see

that M(z) = 1. So it is easy to see if f in Kronecker-cyclotomic, then M(f) = 1.
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The converse is a consequence of Kronecker’s Theorem, a proof of which comes from

Kronecker [15], with more convenient proofs from, for example, McKee [21] or McKee

and Smyth [25].

Definition 1.1.9. We say that a Mahler measure value is non-trivial if it is greater

than 1.

It is currently unknown if there is a smallest, non-trivial Mahler measure. This is

what is known as Lehmer’s Problem, and the following conjecture is associated with

Lehmer [17]:

Conjecture 1.1.10 (Lehmer’s Problem). For all polynomials f ∈ Z[x] such that M(f)

is non-trivial, we have that M(f) ≥ 1.17628081 · · · = λ.

The value λ comes from the polynomial Λ(x) = x10+x9−x7−x6−x5−x4−x3+x+1;

usually referred to as Lehmer’s number and Lehmer’s polynomial respectively.

This is also sometimes known as the Strong Lehmer Conjecture. In turn, there is a

weaker version of this conjecture:

Conjecture 1.1.11. There exists an absolute constant c > 1 such that for all polynomials

f ∈ Z[x], where M(f) is non-trivial, M(f) ≥ c.

Work in trying to answer Lehmer’s Problem can hence go in a couple of different

directions. One of these directions would involve trying to find a polynomial with Mahler

measure λ1 < λ. This would then change the question with regards to the strong version.

Another direction would be to find conditions on c and see if an absolute constant can

be found as a result.

Partial progress has been made on the latter. Due to work from Dobrowolski [12],

and later from Voutier [47], we know that for polynomials f of sufficiently large enough

degree d, we have that:

M(f) > 1 +
1

4

( log log d
log d

)3
.
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1.1.2 Small Mahler Measures

Lehmer’s Problem has been one of the biggest motivators for studying Mahler measures

for many, and as such, much work has spawned from this. One particular object that

has arisen as a result is the study of polynomials which admit Mahler measures which

are comparatively small. From a crude viewpoint, understanding when polynomials have

Mahler measures which are “small” (and, as such, close to λ, the smallest known Mahler

measure) could well help us prove, or even possibly disprove, Lehmer’s Problem.

Before we formalise the definition of a small Mahler measure, we must first look at

some other number theoretic objects: Salem and Pisot numbers.

Salem and Pisot Numbers

Definition 1.1.12. For a polynomial f(z), we define its reverse polynomial as

f∗(z) := zdeg(f)f(1/z).

We say that f is reciprocal if f = f∗.

Remark. The definitions presented in Definition 1.1.12 are known under different names

by other authors. Some may refer to the reverse polynomial as a reciprocal polynomial,

and in turn a reciprocal polynomial as a self-reciprocal polynomial. Others may call the

here-presented reciprocal polynomial a palindromic polynomial.

The use of reverse and reciprocal here is most convenient for the work presented

throughout this thesis, hence the reason for their names.

Definition 1.1.13. A Salem number is a real, algebraic integer α > 1, such that:

• its Galois conjugates (other than itself) all have absolute value at most 1,

• at least one of its Galois conjugates has absolute value exactly 1.

Lemma 1.1.14. Let α be a Salem number, and µα(x) be its minimal polynomial. Then,

µα is reciprocal.

Proof. We know that there is some zero of µα, say β, which has absolute value 1. As

|β|= 1, then we know we can write β = 1/β. Furthermore, we note that µα(β) =

µα(β) = 0. Thus, µα(1/β) = 0.
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Now consider the reverse polynomial of µα, which we know we can write as µ∗α(x) =

xdµα(1/x), where d = deg(µα). We can see that gcd
(
µα(x), x

dµα(1/x)
)

is not trivial,

hence we can write µα(x) = νxdµα(1/x), for some ν.

Finally, if we set x = 1, we see that ν = 1. So, this means that µα(x) = xdµα(1/x),

and hence µα is reciprocal.

Lemma 1.1.15. If α is a Salem number, then all of its Galois conjugates, except itself

and 1/α, have absolute value 1.

Proof. Consider some conjugate of α, say γ, which we assume not to be 1/α. As α is

Salem, we know that |γ| ≤ 1.

Now assume |γ|< 1, and let µα(x) be the minimal polynomial of α. As γ is a Galois

conjugate of α, it is a zero of µα. By Lemma 1.1.14, we know that µα is reciprocal, and

so 1/γ is also a zero of µα. However, this means that |1/γ|> 1, contradicting the fact

that all conjugates of α (except itself) have absolute value at most 1.

So, any Galois conjugate of α, except itself and 1/α, has absolute value exactly 1.

Example. Consider λ, whose minimal polynomial is Lehmer’s polynomial: Λ(x) =

x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1. Let us look at the roots of Λ(x) = 0 plotted

in relation to the unit circle:

Figure 1.1: The roots of Λ(x) = 0.
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We see that the only roots to not lie on the unit circle are λ and 1/λ. So, this means

in particular that the smallest known Mahler measure value is also a Salem number

(and, in fact, is the smallest known Salem number).

Definition 1.1.16. A Pisot number (sometimes called a Pisot-Vijayaraghavan

number) is a real, algebraic integer α > 1 such that all of its Galois conjugates (other

than itself) have absolute value less than 1.

Salem [36] showed that there is a smallest Pisot number, which was soon found by

Siegel [37]:

Example. The smallest Pisot number is the real root of f(x) = x3 − x − 1. This is

θ = 1.32471795 · · ·.

Unlike with Salem numbers, the corresponding minimal polynomials of Pisot numbers

are not reciprocal, except in some special quadratic cases, where they are of the shape

x2 + ax+ 1, for a ∈ Z and a ≤ −3.

It is perhaps not surprising that Salem and Pisot numbers are closely related, and

that their study is closely related. Smyth [42], for example, offers detailed insight related

to this topic.

Small Mahler Measures

As has been noted, the smallest known Mahler measure and smallest known Salem

number are the same. Furthermore, the study of Mahler measures and Salem numbers

can be linked very closely, due to the fact that the Mahler measure of the minimal

polynomial of any Salem number is itself the Salem number (and similarly for the

minimal polynomial of any Pisot number).

When studying Salem numbers, it has been of interest to some to find small Salem

numbers, which are defined as Salem numbers which are less than 1.3. One reason, albeit

not particularly rigorous, for choosing 1.3 as the bound is because it is slightly smaller

than θ ≈ 1.32, the smallest Pisot number. A more concrete justification for choosing

this bound is because it is conjectured that the smallest limit point of the set of Salem

numbers is also θ (see Boyd [1]).
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Definition 1.1.17. The Mahler measure of an integer polynomial is small if it is

non-trivial and less than 1.3.

There are infinitely many small Mahler measures; this is discussed by Boyd and

Mossinghoff [5], and we give a level of justification for this in Heuristic Proposition 1.2.7.

However, we can look at the number of Mahler measures that occur when we restrict the

degree of the polynomial, and only look at irreducible polynomials when doing so. For

example, many authors have looked at polynomials of degree up to 180. Currently, there

are 8574 small Mahler measures known up to degree 180; with online lists split across

Mossinghoff [26] and Sac-Épée [34], and a newly found one by Coyston and McKee

[9]. Additionally, all small Mahler measures are known up to degree 44, and the strong

version of Lehmer’s conjecture has been verified for all polynomials up to degree 56, by

Mossinghoff et al. [27].

Whilst the strong version of Lehmer’s conjecture has only been proven for a small

bounded degree, the weak version is actually much easier to show for any bounded

degree.

Proposition 1.1.18. For all possible polynomial degrees D, there exists some constant

cD > 1 such that for all f ∈ Z[x] with deg(f) ≤ D and where M(f) is non-trivial, we

have that M(f) ≥ cD.

Proof. It is enough to show that there are only finitely many polynomials that have

degree at most D and have Mahler measure in the interval (1, λ). Any such polynomial

must be monic. So, fix some target Mahler measure value for our polynomial f which is

less than λ. A consequence of this is that f must therefore be monic.

All zeros of f must then have moduli less than λ. In turn, all moduli of all of the

coefficients of f are bounded, because they are all sums of products of bounded numbers

of zeros; this bound depends on D.

Hence, the number of possible polynomials f such that 1 < M(f) < λ is bounded.

One can exhaustively check all of these possibilities to see if such a polynomial exists.

One sensible question to ask is what types of polynomials may potentially yield

a small Mahler measure. Fortunately, the following result gives us an answer to this
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question:

Theorem 1.1.19 (Smyth [39]). If M(f) < θ, then f is reciprocal.

A weaker bound of this result was originally stated by Breusch [6], but the result of

Smyth here is the best possible bound. Though this does not mean that all reciprocal

polynomials admit small Mahler measures, as seen below, it gives a narrower collection

of polynomials to search over when trying to find small Mahler measure values.

Example. Let f(x) = x6 + x5 − x4 + x3 − x2 + x+ 1. Then, M(f) = 1.94685626 · · ·.

Another collection of polynomials we must restrict ourselves to when trying to find

small Mahler measures is monic polynomials. As a result of (1.2), the Mahler measure

of f is at least the value of the absolute value of its leading coefficient, meaning any

non-monic (integer) polynomial will have a Mahler measure at least 2.

1.1.3 Mahler Measures from Matrices

Mahler measures are traditionally only associated to polynomials. However, we can in

fact associate Mahler measures to other objects; matrices, for example.

Definition 1.1.20. Let A be an n×n matrix with complex coefficients, with characteristic

polynomial χ = χA(x). Define the “reciprocalisation” of χ as Rχ(z) = zdeg(
χ)χ(z+1/z).

Then, we define the Mahler measure of the matrix A as M(Rχ).

Remark. We refer to Rχ = R as the reciprocal polynomial of the matrix A.

Taking the reciprocalisation of the characteristic polynomial gives us a reciprocal

polynomial, twice the degree of the characteristic polynomial. When first defined by

McKee and Smyth [22], this was done by design, as it allows for a better chance to find

small Mahler measures. It is once again worth stressing, though, that a polynomial

being reciprocal does not guarantee that its Mahler measure will be small.

Example. Let:

A =



2 3 1 0

1 −2 0 1

0 −1 −3 5

3 0 1 0


.
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Then:

χA(x) = x4 + 3x3 − 12x2 − 43x− 21,

Rχ(z) = z8 + 3z7 − 8z6 − 34z5 − 39z4 − 34z3 − 8z2 + 3z + 1,

M(A) =M(Rχ) = 24.83245050 · · · .

As such, it is worth making careful choices for what type of matrices we consider,

if seeking small Mahler measures. There are many ways to do this, but the methods

explored in this thesis will look at finding the adjacency matrices of special types of

graphs: we explore this is greater detail in chapter 3.

1.2 Mahler Measures and n-Variable Polynomials

We can also define the Mahler measure of an n-variable polynomial.

Definition 1.2.1. Let P(z1, · · · , zn) ∈ C[z1, · · · , zn]. The Mahler measure of the

polynomial P is defined as:

M(P) := exp

(∫ 1

t1=0
· · ·
∫ 1

tn=0
log|P(e2πit1 , · · · , e2πitn)| dtn · · · dt1

)
. (1.4)

This is a generalisation of (1.1), and it is easy to see if we set n = 1 here, we get

back Definition 1.1.1. A way of viewing this is as the geometric mean of |P| over the

k-Torus Tk.

A natural question to ask is whether there is an alternative, perhaps simpler, form

to view the Mahler measure of an n-variable polynomial, as in the single variable

case. Unfortunately, the short answer here is that there is not. The main reason

for this is because (1.2), the “simpler” form of viewing Mahler measures for single

variable polynomials, is found due to Jensen’s Formula, which relates to single variable

polynomials, and there is no analogue of this in multiple variables.

That is not to say there is nothing we can do. In chapter 2, we will explore ways

in which we can simplify the viewpoint, particularly when it comes to calculations of

Mahler measures of certain two-variable polynomials.
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1.2.1 Integer and Cyclotomic Polynomials (Again)

As was the case with single variable polynomials, a lot of focus will remain on integer

polynomials, though some results and methods may actually be generalised further.

Here, we outline some analogous statements to those of single variable polynomials.

Definition 1.2.2. A polynomial P ∈ Z[z1, · · · , zm] is said to be

m-Kronecker-cyclotomic if its Mahler measure is 1.

Remark. Following from this, a refinement to Definition 1.1.6 would see us call such a

single variable polynomial that is the product of some number of Φn(z) and/or a power

of z as 1-Kronecker-cyclotomic. However, for simplicity, we will still refer to these

simply as Kronecker-cyclotomic.

The following result from Boyd [3] gives us another way of looking at the Mahler

measure of a particular, special, two-variable polynomial:

Proposition 1.2.3. logM(1 + x+ xn) = logM(1 + x+ y) + c(n)
n2 +O( 1

n3 ), where:

c(n) =


−
√
3π

6 , if n ≡ 2 mod 3 ,

√
3π
18 , if n ≡ 0, 1 mod 3 .

So, we can view the value of logM(1 + x+ y) as a true limit point of the values

logM(1 + x+ xn) as n→ ∞.

This, however, is a very special situation, and in general, the true Mahler measure

values of n-variable polynomials are not known exactly. However, Boyd [3] also provides

a broader statement which is very useful to us in practice:

Proposition 1.2.4. logM(P (x, y)) = limn→∞ logM(P (x, xn)).

And, in fact, Lawton [16] generalised this result for polynomials of n-variables.

This gives us a significantly simpler way of viewing the values of the Mahler measure

of n-variable polynomials with reasonably good accuracy. As noted, it is only in a very

small selection of cases that we do know the true limit point, as in Proposition 1.2.3. In

this thesis, we do not delve into the discussions of the exact values of Mahler measures
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in n-variables (though further discussion of this can be found by, for example, Boyd and

Mossinghoff [5]).

Fortunately, m-Kronecker-cyclotomic polynomials are relatively easy to spot. They

look like Kronecker-cyclotomic polynomials, but with the single variable replaced with a

monomial, as formalised by Boyd [2]:

Proposition 1.2.5. For each m, let Km be the set of polynomials which are products

of ±z1c1 · · · zmcm and polynomials of the form Φa(z1
d1 · · · zmdm), for a ≥ 1 and where

ci, di ∈ Z≥0 for each i. Then, for P ∈ Z[z1, · · · , zm], M(P) = 1 if and only if P ∈ Km.

For example, we know X2 − 1 is Kronecker-cyclotomic (it is the product of Φ1(X) =

X − 1 and Φ2(X) = X + 1), so it is easy to see that x2y8 − 1 is 2-Kronecker-cyclotomic,

by the monomial replacement X = xy4.

It should also come as no surprise that we have an extension to Lemma 1.1.4, and

this would also be another useful tool for finding 2-Kronecker-cyclotomic polynomials.

Lemma 1.2.6. For polynomials P,Q ∈ C[x, y], M(PQ) =M(P )M(Q).

We omit details of the proof, though again, this result is not surprising.

Currently, there are only two known Mahler measures less than 1.3 coming from two-

variable polynomials: 1.25543386 · · · and 1.28573486 · · ·. However, finding two-variable

polynomials which give Mahler measure less than 1.37 is of interest. Choosing 1.37 as a

bound may seem arbitrary at first. However, there is some reasoning behind this.

It is conjectured that the smallest Mahler measure from a three-variable polynomial

is 1.38135 · · ·, from the polynomial P(x, y, z) = (x2 + 1)yz + (y2 + 1)xz + (z2 + 1)yz.

Noting that Mahler measures from three-variable polynomials will be limit points of

limit points of Mahler measures, we would expect to find a large number Mahler measure

values coming from two-variable polynomials around this value. As such, taking a value

comfortably below this ensures we will find a restricted number of values, keeping them

of interest.

Incidentally, this logic could suggest a refinement to our definition of small Mahler

measures coming from single variable polynomials. As mentioned, the smallest known

Mahler measure coming from two-variable polynomials is 1.25543386 · · ·. As this can
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be seen as a limit point of Mahler measure values, and in particular, one which is not

obtained, we can expect to find a infinite number of small Mahler measures from single

variable polynomials which will be around this value. As such, taking a value below this

will ensure we find a restricted number of values. For example, McKee and Smyth [25]

note that there are only 236 known single variable polynomials with Mahler measure

below 1.25 (values which they call tiny Mahler measures).

Currently, there are 61 known Mahler measures from two-variable polynomials less

than 1.37 (referred to as “small limit points of Mahler measures”), which can be found

between Mossinghoff [26], Otmani et al. [30] and Sac-Épée et. al. [35].

Before moving on, we use our knowledge of Mahler measures coming particularly

from two-variable polynomials to give some level of justification for a claim made earlier:

Heuristic Proposition 1.2.7. There are infinitely many small Mahler measure values.

Non-Proof. From Proposition 1.2.4, we can say that the Mahler measure coming from

a two-variable polynomial is the limit of a sequence of Mahler measure values coming

from single variable polynomials. We also have that the smallest known Mahler measure

value from two-variable polynomials is L = 1.25543386 · · ·. So, for some polynomial

P (x, y), we have that for all ϵ > 0, there is some natural number N such that for all

n > N , we have:

|M(P (x, xn))− L |< ϵ .

Remark. We only list this as a “Heuristic Proposition” and give a “non-proof” because we

are skipping some key details. Namely, we do not know if in this case, L = 1.25543386 · · ·

is a true limit point of the sequence of values M(P (x, xn)). Indeed, this was an issue we

raised when introducing Propositions 1.2.3 and 1.2.4.

As such, we do not know if, in our proof above, M(P (x, xn)) becomes constant for

all values greater than some number k ∈ N. Such discussion is beyond the scope of this

thesis, but can be seen in greater detail in, for example, Boyd and Mossinghoff [5].
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1.3 Motivation

It is striking that the smallest known Mahler measure, λ, comes from a relatively small

and straightforward-looking polynomial. As has already been noted, λ is also the smallest

known Salem number, and we can see that these two phenomena are closely linked, in

the sense that if a smaller Salem number is found, so too is a smaller Mahler measure.

And indeed, some of the smallest known Mahler measure values are also Salem numbers.

However, whilst there is a clear link between Mahler measures and the likes of Salem

and Pisot numbers, they are perhaps too closely related. By this, we mean that the

study of one will likely do little to further deepen our understanding of the other at this

point. As such, this leads us to an interesting question: are there links between Mahler

measures to other, less-closely related, mathematical areas, that can help deepen our

understanding?

1.3.1 An Interlude Featuring Knots

As previously mentioned, the Mahler measure has links and uses to other fields of study,

but these do not particularly enrich our understanding of Mahler measures. However,

there is an interesting connection between Mahler measures and knot theory.

For the context of this thesis, we do not need to delve too deep into knot theory: see

Appendix A for all necessary details. In short, we note that the Alexander polynomials

of the pretzel knots PK(−2, 3, 3) and PK(−2, 3, 5) are cyclotomic polynomials, whilst

the Alexander polynomial of the knot PK(−2, 3, 7) (which is shown in Figure A.1) is in

fact Λ(−t). This occurrence can be found in Reidemeister [32], which was published a

year before Lehmer published the polynomial in the context of Mahler measures.

What this phenomenon exhibits is a family of topological objects which have an

associated polynomial with trivial Mahler measure in the very first, smallest, examples

of the family. Then, as we make small changes to the object, we get an associated

polynomial with small Mahler measure. In some sense, this means that the small

topological changes made to the object are leading us from cyclotomic polynomials to

‘almost-cyclotomic’ polynomials. These almost-cyclotomic polynomials are the ones

which we would expect to have the best chance of having a small Mahler measure.
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This connection has been studied, and one key result confirms that λ is the smallest

Mahler measure to come from a pretzel knot (see, for example, Hironaka [14]). However,

this connection might not be the most fruitful for helping further our understanding of

Mahler measures, due to the fact there is no closed formula for calculating the Alexander

polynomial of a knot, as discussed briefly in Appendix A. Nevertheless, what this does

show is that there is worth in investigating other mathematical objects which have

polynomials attached to them.

1.3.2 Combinatorial Inspiration

As noted in Section 1.1.3, McKee and Smyth introduced the notion of the Mahler

measure of a matrix, by taking the reciprocalisation of its characteristic polynomial. In

particular, McKee and Smyth focused on integer symmetric matrices for attempting to

find small Mahler measures. And indeed, much of their focus was on integer symmetric

matrices whose entries only took on the values of −1, 0, 1.

From here, and with the understanding that Mahler measures could be attached to

other mathematical objects, a leap could be made to connect Mahler measures with

graphs. We can get integer symmetric matrices from graphs by, for example, taking the

adjacency matrix of the graph. This allows us to define the Mahler measure of a graph,

as first defined by McKee and Smyth [22]:

Definition 1.3.1. The Mahler measure of a graph G is the Mahler measure of the

reciprocal polynomial of its adjacency matrix. That is, if we let A = AG be the adjacency

matrix of G, χ = χA(x) be the characteristic polynomial of A and RG = Rχ(z) be the

reciprocal polynomial of χ, then we define the Mahler measure of G as M(G) :=M(RG).

As had been done with families of knots, McKee and Smyth categorized graphs which

have Mahler measure 1: so-called cyclotomic graphs. One can then consider ‘nudging’ or

‘growing’ these graphs, by means of adding edges and vertices, creating a graph which is

combinatorially close to a cyclotomic graph. The hope from here is that a graph which

is combinatorially close to being cyclotomic may be also have a Mahler measure that

is small too. However, McKee and Smyth [24] only found five small Mahler measures

using this method.



1.3. Motivation 32

Large parts of this thesis aim to extend the work of McKee and Smyth, looking

at more general graphs; these will be introduced in chapter 3. As we will see, looking

at a wider variety of graphs means that we will keep, and be able to utilise, many

graph theoretic properties to aid us in finding small Mahler measures. However, we also

see that we lose some other powerful properties that only can be used with the more

regularly used graphs. As such, we introduce suitable ways to work with these types of

graphs in chapter 4.

In chapter 5, we then look at experiments which were run utilising the theory of

these special types of graphs. We also utilise methods discussed in chapter 2 to explicitly

calculate Mahler measures of two-variable polynomials that we can also associate to our

combinatorial objects.

1.3.3 Polynomials with the Same Mahler Measure

Owing to the nature of the Mahler measure, work related to this thesis has involved a

lot of experimentation and explicit computations. These experiments have primarily

made use of PARI/GP [44].

One particular question this raises is the reliability of results we receive. Say we

check the Mahler measures of two different polynomials using PARI/GP (or, indeed,

any computational software), and they return the “same” values. We cannot conclude

with absolute certainty that these polynomials share the same Mahler measure, but

rather, that they agree up to the precision that PARI/GP has been set to. Though this

is perhaps less of an issue in the case of single variable polynomials, where there are

many methods for checking roots, this is a bigger problem with two-variable polynomials

(and, indeed, n-variable polynomials more generally).

In chapter 6, we attempt to quash these potential concerns. We state a potential result

related to single variable polynomials, including experimental and heuristic justification

for why we believe this result to be true, as well as our attempts to prove this so far.

We then move to two-variable polynomials, where we introduce a notion of ‘equivalence’,

and how this helps us understand when two two-variable polynomial can, and cannot,

share the same Mahler measure value.
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1.3.4 Road Map

So far, we have introduced the Mahler measure and some important known results. We

have also given motivation for why we wish to explore the connection between Mahler

measures and digraphs. To complete this chapter, we now give a road map for the

contents of the thesis: this includes the main contributions we will make, as well as the

approaches of the thesis.

The key contribution of this thesis is a new method for finding small Mahler measures

for both one and two-variable polynomials. This is a versatile method which can be easily

adapted to switch between finding Mahler measures of one and two-variable polynomials;

this is a unique feature of the method. A highlight is Result 5.3.1, which in fact gives us

a new small Mahler measure coming from a single variable polynomial. In finding this

new value, we also found over 97% of known small Mahler measure values from single

variable polynomials; making this one of the most fruitful methods currently known.

We also find a large proportion of known small Mahler measures from two-variable

polynomials. These findings make chapter 5 the key chapter of the thesis.

Chapters 2–4 serve two purposes. Their primary purpose is to serve as building

blocks towards chapter 5, allowing us to outline our new method for finding small

Mahler measures in both one and two variables. However, these building blocks are also

interesting in their own right, and some are noteworthy within the field. As such, we

also add peripheral details where necessary, creating further contributions.

The highlight of chapter 2 is the introduction of a new method for calculating the

Mahler measures of two-variable polynomials. We see that exact evaluations of such

polynomials are incredible rare. Whilst methods exist for calculating these values to

a certain number of significant figures exist, they each have their own flaws. Through

Lemma 2.2.1 and Proposition 2.2.5, we are able to introduce a refined method for

calculating such Mahler measures, which is practical to implement and is particularly

relevant for searching for small Mahler measures of two-variable polynomials. Moreover,

Section 2.5, discusses the distinction between the terms “variable” and “dimension” in

terms of Mahler measures. This is a somewhat technical aside, although an important

one, especially as this is something that is usually omitted, or only loosely touched upon,
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when studying Mahler measures.

Whilst the motivation of chapter 2 is to build upon theoretical knowledge, we take a

very practical approach to the work presented. In particular, Example 2.3.1 highlights

our new method in great detail, showcasing how all the theoretical knowledge is applied,

and why our conditions are necessary.

Chapter 3 starts by providing background and context about what is already known

at the interface of the study of Mahler measures and graphs. In particular, and as

already noted, simple graphs are not fruitful for helping us find small Mahler measures,

which motivates our introduction of digraphs. As such, our main focus in this chapter

is to explain the intricate nature of digraphs, and why working with them is much

more difficult compared to simple graphs. We also give some heuristic ideas which will

help us later. Section 3.5 highlights specific theoretical results related to digraphs to

highlight which tools we have at our disposal. Results presented here are regularly

complemented with examples of specific digraphs, and Lemma 3.3.2 is particularly useful

moving forward.

Chapter 4 is a direct continuation of chapter 3. We first use our knowledge of digraphs

to find various ways to extend and “grow” digraphs, by attaching what we call pendant

paths to them, which coincides with our heuristic ideas from before, which climaxes

with Theorem 4.2.14. This result is then followed by Example 4.2.15, to demonstrate

explicitly how it is applied in practice. This chapter also includes another key result,

Theorem 4.3.1, which allows us to “internally grow” digraphs.

This then puts us in a position to look at our experiments which found small Mahler

measure values, which is the area of concern for chapter 5. In Section 5.1, we explain the

specific shape of digraphs we wish to grow when using our key theorems from chapter 4,

and then outline how our experiments are run in Section 5.2. This then leads us onto

the highlight of the thesis – Section 5.3 – which includes our newly found small Mahler

measure and details the other small Mahler measures we found from one and two-variable

polynomials, the latter of which are shown in Table D.1. We also include Example 5.3.3,

which shows in great detail how we find the Mahler measures of two-variable polynomials

from digraphs.
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The thesis then steps away from finding small Mahler measures to a different, albeit

related, topic. As our methods for calculating Mahler measures involve using computer

software, we always have to be wary of our results and calculations, and ensure we are

confident that our values are correct to our mentioned accuracy. Another way of viewing

this concern is that we could consider different polynomials which share the same Mahler

measure, and by computing the Mahler measure of these different polynomials, we are

effectively wasting time in our experiments. As such, we investigate conditions for when

two polynomials can share the same Mahler measure.

When we consider single variable polynomials, our main idea is presented as Open

Problem 6.1.1. We justify the formulation of this problem in Section 6.1, and outline

some theory which may help prove this in Section 6.2. We then move to considering the

problem for two-variable polynomials; this is significantly more interesting, but equally

much more intricate. The key concrete results here are Theorem 6.4.5 and Proposition

6.6.4. These give us two wide-reaching results which capture and explain many of the

times when two two-variable polynomials share the same Mahler measure. Unfortunately,

they do not capture all cases when this occurs, as described in the ending of the chapter.

Owing to the fact that chapter 6 does not fully answer the key questions raised,

much of the what is presented here is speculative ideas. These speculations are justified

by means of auxiliary results along the way, as well as several detailed examples. The

aim of this final main chapter is to initiate the discussions about when polynomials share

the same Mahler measure, and present the building blocks of the theory, in a hope that

the key questions can be answered in the future.

The thesis concludes with chapter 7, which summarises the unanswered questions

and open problems which have come about within the thesis. As such, it gives potential

leads for future work. These include long-standing questions, such as Question 7.1.2, or

questions first raised within the main body of the thesis, such as Questions 7.2.3 and

7.2.4, as well as the main problems from chapter 6.



Chapter 2

Calculating Mahler Measures of

Two-Variable Polynomials

As mentioned in chapter 1, calculating explicit values of Mahler measures of polynomials

becomes increasingly difficult as the number of variables increase. This should come as

no surprise, as its definition involves several integrals of a non-standard multi-variable

function. However, we have results, such as Proposition 1.2.4, which show us that Mahler

measures of two-variable polynomials are limits of Mahler measures of single variable

polynomials. Whilst this still does not give us a way for calculating an exact value for

Mahler measures of polynomials in two-variables, it is a useful tool for knowing roughly

what value the Mahler measure should take.

In this chapter, we look at ways in which Mahler measures of two-variable polynomials

can be calculated, as well as ways in which we can make our calculations as simple as

possible. We also introduce an evolution of one of these methods, which is particularly

relevant to experiments which will be reported later in this thesis. We finally discuss a

subtlety that occurs when calculating Mahler measures of several variables. This will

show that, in the context of this thesis, we are in fact more concerned with dimension

when calculating small Mahler measures of two-variable polynomials. More broadly, this

highlights that the dimension of a polynomial is something which holds greater weight

than the number of variables, especially when we are focusing on small Mahler measures.
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2.1 Current Methods

Some work has gone into giving explicit forms of Mahler measures of certain two-variable

polynomials. As already seen, Proposition 1.2.3 shows that m(1 + x+ y) is a true limit

point of m(1 + x+ xn) as n → ∞, and gives us the error term as well. However, the

following result of Smyth gives us an exact formulation:

Example 2.1.1 (Smyth [40]).

m(1 + x+ y) =
3
√
3

4π
L(2, χ3) , (2.1)

where L(s, χ) =
∑∞

n=1

χ(n)
ns is the Dirichlet L-function, and χ3(n) is the Legendre symbol

(n3 ). In particular, we have:

L(2, χ3) = 1− 1

4
+

1

16
− 1

25
+ · · · .

An alternative formulation for this specific polynomial can see us rewrite the integral

in a different form, and use dynamical systems to evaluate this integral.

Example 2.1.2 (Pollicott and Felton [31]). By use of Jensen’s Formula, we can write:

m(1 + x+ y) =

∫ 5/6

1/6
log 2 sin(πs) ds . (2.2)

By using the change of variables t = 3
2(s−

1
6), this gives us:

m(1 + x+ y) =
2

3

∫ 1

0
log

(
2 sin

(2π
3
t+

π

6

))
dt . (2.3)

Pollicott and Felton then describe how to estimate this to a high level of accuracy. Their

method revolves around finding an explicit solution to the integral in terms of series,

and then, as they describe it, “use periodic points of a simple dynamical system (the

doubling map on the interval)” to in turn describe this series.

Remark. Here, we have provided a (trivial) correction to the original example provided

by Pollicott and Felton, who state that the integrand is log

(
2 sin

(
2π
3 t+

1
6

))
.
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It is perhaps striking (and, if not, at least important) in this instance that (2.2) uses

Jensen’s Formula, a tool for single variable polynomials, to simplify the integral of a

two-variable polynomial to a single variable polynomial. So, whilst there is no analogue

of Jensen’s Formula for two-variable polynomials, it can still play a role in helping us

understand Mahler measures of two-variable polynomials. Further still, Pollicott and

Felton also note Jensen’s Formula can be applied to polynomials in more than two

variables, giving an example with a three-variable polynomial.

Of course, there are known ways of estimating double integrals to a high degree of

accuracy. For example, Otmani et al. [30] utilised an algorithmic method for finding

two-variable polynomials with small Mahler measures. To calculate the integrals involved

for finding these values, they used the Monte Carlo method to approximate double

integrals. Discussion on this statistical method can be found in various textbooks – such

as Newman and Barkema [28] – but we give a basic heuristic overview of the method for

single integrals here for reference.

Example. Consider a function f(x) which we wish to integrate between two real values

a and b, with b > a. Say:

I =

∫ b

a
f(x) dx .

Choose N values in the range of the integral at random; say {x1, · · · , xN} ∈ [a, b].

For each xi, calculate f(xi)(b−a): this can be viewed as the area of a rectangle which has

the width of the range we are integrating over. These values, in a crude sense, estimate

the value of I (albeit rather poorly in some instances). However, we can average these

estimates and, for large N , this can be thought of as a good approximation. This can be

summarised by (2.4), which is usually referred to as the basic Monte Carlo estimator :

⟨IN ⟩ = b− a

N

N∑
i=1

f(Xi) , (2.4)

where ⟨IN ⟩ represents an approximation of I over N samples.
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Finally, the law of large numbers allows us to note that:

P
(

lim
N→∞

⟨IN ⟩ = I

)
= 1 .

That is, the probability that the basic Monte Carlo estimator gives us the value of our

original integral for very large N is 1.

It is not too difficult to see how this method could be extended to double integrals,

and how it is a powerful tool for giving good estimates.

Another method is outlined by Boyd and Mossinghoff [5]. Their approach, like that

of Pollicott and Felton, uses Jensen’s Formula to reduce the double integral to a more

manageable single integral (in fact, more generally, n integrals to (n − 1) integrals).

Their method, predating that of Pollicott and Felton, can also be used more generally.

Example 2.1.3. Let P (x, y) have degree d in y, and y1(x), · · · , yd(x) be continuous,

piecewise analytic functions in x that are the d solutions to P (x, y) = 0. This means we

can write:

P (x, y) = a0(x)

d∏
k=1

(y − yk(x)) ,

where a0(x) is the coefficient of the yd term. A similar argument used in the Proof of

Proposition 1.1.2 shows that:

∫ 1

0
log|P (x, es)| ds = |a0(x)|+

d∑
k=1

log+|yk(x)| . (2.5)

Finally, letting x = et in (2.5) and integrating over t gives:

m(P ) = m(a0(x)) +

d∑
k=1

∫ 1

0
log+|yk(et)| dt . (2.6)

We note here that m(P ) is the logarithmic Mahler measure of a two-variable polynomial,

whilst m(a0(x)) is the logarithmic Mahler measure of a single variable polynomial.

From here, Boyd and Mossinghoff [5] detail how to explicitly calculate the integrals of

each of these branches. Most polynomials they considered are of small enough degree in

y that these branches are sufficiently “nice” to integrate, but further details of calculating
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more complicated examples are also covered by Boyd [4].

These examples give us different ways of calculating two-variable Mahler measures.

Statements of exact formulations, such as (2.1), are extremely rare, and only known in

very special instances. The method from Otmani et al. did expand the known list of

small Mahler measure values coming from two-variable polynomials, but they do note

that their experiments took a long time and were very CPU expensive. However, the

examples from Pollicott and Felton, in special cases, and Boyd and Mossinghoff, more

generally, give us ways of calculating two-variable Mahler measures to a high degree of

accuracy, and both do this by reducing the calculation to a single integral, which can

be quicker and more efficient. This is useful, and sufficient, when trying to find small

Mahler measures coming from two-variable polynomials, and we now turn to refining

this method for our own benefit.

2.2 Evolution: A Refined Method

We now outline our refined method for calculating the Mahler measures of two-variable

polynomials. This method is based on the method of Boyd and Mossinghoff, as seen in

Example 2.1.3. It was born out of a need to create a routine we could use to calculate

Mahler measures of two-variable polynomials. Whilst trying to create something which

would follow the Boyd and Mossinghoff method, this similar method came to light. In

fact, we will see that this method applies more specifically to the polynomials we discover

by means of experiments which are reported upon later in this thesis.

A useful observation, which will be one of the main tools in constructing our method,

is as follows:

Lemma 2.2.1. For any two-variable polynomial P (x, y), we have:

logM(P ) =
1

π

∫ π

0
logM(P (x, eit)) dt . (2.7)

Before proving this, we first need a simple result related to the Mahler measure of a

polynomial and its complex conjugate.
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Definition 2.2.2. Let f(z) = anz
n + an−1z

n−1 + · · ·+ a1z+ a0, with ai ∈ C. We define

the complex conjugate of f , denoted f , to be:

f(z) := anz
n + an−1z

n−1 + · · ·+ a1z + a0 .

Lemma 2.2.3. For a polynomial f ∈ C[z], M(f) =M(f).

Proof. We know that f(z) = 0 if and only if f(z) = 0. Furthermore, we also know that

|z|= |z|. As such, the moduli of the zeros of f and f are the same.

From here, we can use (1.2) to see that M(f) =M(f).

Proof of Lemma 2.2.1. By suitable substitutions in the definition of M(P (x, y)), we get:

M(P ) = exp

(
1

(2π)2

∫ 2π

s=0

∫ 2π

t=0
log|P (eis, eit)| dt ds

)
.

We can then change the order of integration to get:

M(P ) = exp

(
1

(2π)2

∫ 2π

t=0

∫ 2π

s=0
log|P (eis, eit)| ds dt

)
. (2.8)

We can now evaluate the inner integral of (2.8) to get:

M(P ) = exp

(
1

2π

∫ 2π

t=0
logM(P (x, eit)) dt

)
.

We now split the integral into two halves:

M(P ) = exp

(
1

2π

∫ π

t=0
logM(P (x, eit)) dt+

1

2π

∫ 2π

t=π
logM(P (x, eit)) dt

)
. (2.9)

By use of the substitution θ = 2π − t on the second integral of (2.9) only, we now get:

M(P ) = exp

(
1

2π

∫ π

t=0
logM(P (x, eit)) dt+

1

2π

∫ 0

θ=π
(−1) logM(P (x, e−iθ)) dθ

)
.

And a suitable change to the second integral gives us:

M(P ) = exp

(
1

2π

∫ π

t=0
logM(P (x, eit)) dt+

1

2π

∫ π

θ=0
logM(P (x, e−iθ)) dθ

)
. (2.10)
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If we now consider Qt(x) = P (x, eit), then Qt(x) = P (x, e−it). As such, we have

that M(P (x, eit)) =M(P (x, e−it)), by Lemma 2.2.3. This means that both integrals in

(2.10) are in fact equal.

So, by summing together and subsequently taking logs, we then achieve (2.7), our

desired result.

Lemma 2.2.1 reduces the problem of calculating the Mahler measure of a two-variable

polynomial to two much simpler steps. The first step gives us an expression, in C[t],

for the Mahler measure of some single variable polynomial, which is related to the

two-variable polynomial. The second step then allows us to integrate this expression,

which in turn evaluates the Mahler measure of the given two-variable polynomial. This

is significantly easier to do than attempting to do the double integral directly.

We can evaluate integrals like in (2.7) with reasonable ease. If we treat P (x, eit) as

a single variable polynomial in x, we can then use Proposition 1.1.2 to get an expression

for the Mahler measure in terms of t. Our integrand then becomes log h(t), for some

function h(t) and we can integrate this as we would any other function.

This does cause a problem, however. Generally speaking, the function H(t) =

logM(P (x, eit)) is not smooth. Indeed, in most cases, H has many “spikes” (points

where we cannot define the derivative of H), meaning that it is very hard to get an

accurate value when integrating directly. On the other hand, if we are able to locate

these spikes, we can integrate between them, and sum the resulting values together, to

get the value of any integral of the form (2.7).

It is at this point we make an extension to Definition 1.1.12:

Definition 2.2.4. We say a polynomial P(z1, · · · , zn) is reciprocal if P(z1, · · · , zn) =

z1
d1 · · · zndnP(1/z1, · · · , 1/zn), such that degzi(P) = di for each i.

Remark. We note that if we have n = 1, this indeed recovers our original Definition.

The polynomials we consider for our experiments later in this thesis will always be

reciprocal. When this happens, we are able to locate the aforementioned spikes (by

methods we will outline shortly). This does mean that our refined method will ultimately

only apply for reciprocal polynomials, but this is not a problem for us.
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Proposition 2.2.5. Let P ∈ Z[x, y] be non-zero and reciprocal. Then, the spikes of

the function logM(P (x, eit)) are in correspondence with a subset of the solutions of

discyP (x, y) = 0.

Proof. Let degx(P ) = n and degy(P ) = m.

Since P is reciprocal and has real coefficients, we know that:

P (x, y) =xnymP (1/x, 1/y), x, y ∈ C∗ , (2.11)

P (x, y) =P (x, y), x, y ∈ C . (2.12)

For t ∈ [0, 2π], let γ1(t), · · · , γn(t) be the branches of the solutions of P (x, eit) = 0. If

P (x, eit) = 0, then (2.11) gives us P (1/x, e−it) = 0 (since x ̸= 0 here). Then, (2.12)

gives us P (1/x, e−it) = P (1/x, eit) = 0.

For reference, the sketch below demonstrates visually what happens when we map

z 7→ 1/z :

//

OO

ℜ

ℑ

1

i

0

_

_

z

1/ z

.

In words, it means that any value outside the unit circle is mapped into the unit

circle (and vice versa), and the newly mapped value remains on the straight line formed

by the original value and the origin.

Hence, if x = γj(t), for some j and t, then 1/x = γk(t), for the same t. In view of

(2.6), spikes occur when some |γj(t)| crosses from being on the unit disc (i.e.: of value

at most 1) to being outside the unit disc (i.e.: of value larger than 1), or vice versa.

We now say that t1 is a “critical value” if |γj(t1)|= 1 and |γj(t)|> 1 for t ∈ (t1, t2],

for some j and t2, or for t ∈ [t2, t1), for some j and t2 (the former occurring when |γj(t)|

crosses from being on the unit disc to being outside it, the latter in the opposing case).
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These critical values include all the spikes.

Then, the mapping z 7→ 1/z maps γj to γk, for some k ̸= j, since γk(t2) ̸= γj(t2).

However, we have that γk(t1) = γj(t1). We will call this value eis.

Remark. A consequence of what we have shown here is that k = j if and only if γj(t)

is strictly confined to the unit circle.

We note that the value x = eis is in fact a double root of P (x, eit1) = 0. So, the

polynomial discxP (x, eit) (a single variable polynomial in x) vanishes precisely at the

point t = t1. Therefore, discyP (x, y) vanishes precisely at the point y = eit.

Remark. We see that the “critical values” mentioned here include all spikes, but this

does not mean that all critical values are spikes. We see later, in Example 2.3.1, for

instance, a situation where this is the case.

As a result of Proposition 2.2.5, we now have no more worries about using Lemma

2.2.1 for calculating the Mahler measure of a two-variable polynomial. Furthermore, it

should be noted that this work applies analogously to the polynomial P (eis, y), giving

us the following:

Lemma 2.2.6. For any two-variable polynomial P (x, y), we have:

logM(P ) =
1

π

∫ π

0
logM(P (eis, y)) ds . (2.13)

We present two proofs, which are essentially the same:

Proof (Version 1). We can follow an analogous argument as presented in the proof of

Lemma 2.2.1. Equally, a very similar proof to that of Proposition 2.2.5 shows us that

the spikes of the function logM(P (eis, y)) are in correspondence with the solutions of

discxP (x, y).

Proof (Version 2). Consider Q(x, y) = P (y, x) and apply our previous results to Q. The

result then follows.

In practice, this means that we take our two-variable polynomial P , treat it as a

single variable polynomial in either x or y (replacing the other term with eit or eis
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respectively). We then find the Mahler measure of this single variable polynomial (in

terms of t or s respectively), and then integrate the resulting function (which will be

in the form of log h(t) or log g(s) respectively). Broadly speaking, there is no preferred

choice here: either option results in the same answer. However, in some cases, our

substitutions may result in one of the functions log h(t) and log g(s) being “easier” to

integrate, in which case, it is perhaps more sensible to work with that particular function.

We will soon look at examples of using this method in practice. Before doing so, we

briefly establish how exactly we find spikes of functions like logM(P (x, eis)), and how

we then go on to use them.

Doing this makes use of Proposition 2.2.5, and one can easily create a short code to

do this. The procedure we follow is:

1. Find ∆(y) = discyP (x, y),

2. Establish which roots of ∆(y) = 0 have absolute value 1; discard all others,

3. Label each conjugate pair of roots by r1, · · · , rn (n ≥ 1, unless there are no spikes,

in which case n = 0),

4. Calculate ti = arccos (ℜ(ri)), for each ri. These are the potential locations of the

spikes,

5. Calculate (2.14), as seen below.

If we are in the rare situation where there are no spikes, then we can calculate the

integral
∫ π
0 logM(P (x, eit)) dt directly.

As described earlier, the actual calculation made in practice is:

logM(P ) =
1

π

(∫ t1

t=0
logM(P (x, eit)) dt+ · · ·

+

∫ tn

t=tn−1

logM(P (x, eit)) dt+

∫ π

t=tn

logM(P (x, eit)) dt

)
, (2.14)

and since the function is smooth in each specified interval, this is fine.

When using PARI/GP, this routine is quick. However, perhaps unsurprisingly, it

can struggle with very large, complicated polynomials which have many spikes (as do
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other methods). Since we are searching for small Mahler measures, we can circumvent

this issue by choosing good candidates of polynomials which may potentially have small

Mahler measure. We will outline how we do this later, in chapters 4 and 5.

2.3 Examples: The Good and The Bad

This Section is dedicated to looking at a couple of examples in detail, showing what is

happening at each step. Of course, in practice, none of this is seen: it is all encapsulated

within one command. Nevertheless, it is helpful to see this method executed, step-

by-step. We will also show a more complicated example which this method struggles

with, to highlight the importance of making sure we consider the “right” polynomials for

attempting to find small Mahler measures.

2.3.1 Good Examples

Example 2.3.1. Let P (x, y) = (y4 − y3)x6 − y4x4 + x2 + y − 1.

Though in practice our code does not do this, here we look at a plot of the function

logM(P (x, eit)) between 0 and π:

Figure 2.1: A plot of logM(P (x, eit)).

This plot was done using the PARI/GP command ploth, which gives a good overview

of the function, although certainly not as in depth as other software options. Nonetheless,

this suggests that the function is not smooth, and will likely have at least two spikes

within this range.
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We now follow our procedure. The first thing to do is establish what ∆(y) =

discyP (x, y) is. The PARI/GP routine poldisc gives us:

∆(y) =(−64y9)(16y22 − 64y21 + 96y20 − 280y19 + 1384y18 − 3808y17 + 6825y16

− 12414y15 + 29107y14 − 63320y13 + 103197y12 − 121478y11 + 103197y10

− 63320y9 + 29107y8 − 12414y7 + 6825y6 − 3808y5 + 1384y4 − 280y3

+ 96y2 − 64y + 16) .

We now find the roots of ∆(y) = 0 (we use polroots in PARI/GP), and discard

those with modulus not equal to 1. This leaves us with four pairs of roots:

• r1 = 1± 0i ,

• r2 = 0.94023 · · · ± 0.34053 · · · i ,

• r3 = 0.93888 · · · ± 0.34423 · · · i ,

• r4 =
1
2 ±

√
3
2 i .

We now take the arccos of the real parts of each of these values, giving us:

• t0 = 0 ,

• t1 = 0.34749 · · · ,

• t2 = 0.35142 · · · ,

• t3 = 1.04719 · · · .

Before moving on, we note a couple of things here. Firstly, we see that one of our

identified points is 0, however, Figure 2.1 shows that it does not necessarily appear to be

a spike. Indeed, Figure 2.2 suggests that the function is smooth here. However, we recall

that Proposition 2.2.5 states that the spikes of our function are only in correspondence

with a subset of the solutions of our ∆(y). As such, any identified points are just

potential locations of spikes.

In practice, we still integrate between these identified points. Moreover, in this

particular instance, we would be integrating from the value t = 0 anyway. So we can

proceed as normal.



2.3. Examples: The Good and The Bad 48

Figure 2.2: An alternate plot of logM(P (x, eit)), suggesting smoothness at the origin.

Secondly, our procedure as outlined earlier sees us calculate values ti such that

ti < ti+1 for each necessary i (so that we may calculate (2.14)), and that we have

corresponding labels for our pairs of roots ri. However, there is no easy systematic way

to find and enumerate the pairs of roots ri such that the corresponding ti are such that

ti < ti+1. In practice, we compute the ti in whatever order they emerge, and then sort

them afterwards. For the sake of this example, we have labelled the roots ri so that the

ti values appear in the appropriate order.

Finally, upon a first look at Figure 2.1, one may think there are exactly two spikes.

However, we note that t1 and t2 are close together, so this is not clear on a rough plot

such as the one seen in Figure 2.1. A plot using a smaller range, such as Figure 2.3, or

different software with the same range, makes these two spikes more distinguishable.

Figure 2.3: A plot of logM(P (x, eit)) in the range x ∈ [0.3, 0.4], highlighting the spikes

at t1 and t2.
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We now calculate logM(P ) as in (2.14), which gives us:

logM(P ) =
1

π

∫ 0.34749···

t=0
M(P (x, eit)) dt+

1

π

∫ 0.35142···

t=0.34749···
M(P (x, eit)) dt

+
1

π

∫ 1.04719···

t=0.35142···
M(P (x, eit)) dt+

1

π

∫ π

t=1.04719···
M(P (x, eit)) dt .

Using the standard precision provided by PARI/GP (38 significant digits), this gives

us that M(P ) = 1.3486519908902990407430414102458380026. This matches the value

given by Otmani et al. [30] for this polynomial, up to their provided accuracy (which

was 15 significant figures).

We now show an example where we treat our two-variable polynomial P as a single

variable in y, hence replacing x with eis. In fact, to show the versatility of our method,

we will look at the same polynomial as in Example 2.3.1. In the following, we will not

be going into as much detail as before, noting the key concepts are the same, but still

outline how the procedure works.

Example 2.3.2. Let P (x, y) = (y4 − y3)x6 − y4x4 + x2 + y − 1. We plot the function

logM(P (eis, y)) between 0 and π (though, again, there is no need to do this in practice):

Figure 2.4: A plot of logM(P (eis, y)).

Though this perhaps should not be surprising, we note how strikingly different this

is to Figure 2.1.

Following our explained routine, we find that there are indeed two spikes; these are

located at s1 = 0.34148 · · · and s2 = 2.80010 · · · . Calculating logM(P ) as in (2.14)
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gives us:

logM(P ) =
1

π

∫ 0.34148···

s=0
M(P (eis, y)) ds+

1

π

∫ 2.80010···

s=0.34148···
M(P (eis,y)) ds

+
1

π

∫ π

s=2.80010···
M(P (eis, y)) ds .

And again, using the standard precision provided by PARI/GP, this gives us that

M(P ) = 1.3486519908902990407430414102458380026. This is exactly as in Example

2.3.1, demonstrating that these methods do indeed give us the exact same Mahler

measure value.

2.3.2 A More Difficult Example

We now turn our attention to a case where our refined method is not as efficient or

practical to use.

Example 2.3.3. Let P (x, y) = y6x27 − (y6 + y5)x21 + y3x14 + y3x13 − (y + 1)x6 + 1.

Again, let us look at the plot of the function logM(P (x, eit)) between 0 and π:

Figure 2.5: A plot of logM(P (x, eis)).

We see that this plot certainly has many more spikes. It perhaps should not be too

surprising that there are more spikes: polynomials of larger degree lend themselves to

having more spikes. Identifying all these spikes, and then integrating between each of

them, is thus more time consuming.

Finally, we find that M(P ) = 1.46829299 · · ·.
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Example 2.3.3 may not seem significantly more complex compared to Examples

2.3.1 and 2.3.2. Whilst it is true there are more spikes, the smooth components of the

function look “nice” to integrate between. However, in practice, the computations still

take significantly longer.

For example, using our routine, the calculation involved in Example 2.3.3 lasted more

than 270 times longer than the calculation involved in Example 2.3.1. This represents a

significant increase in time, and it is not inconceivable that there are polynomials which

would take even longer than this. Our routine and method presented here could perhaps

be optimised further, or be more efficient on more powerful machines or when run on

software other than PARI/GP, but these explorations go beyond the scope of the work

presented here.

This creates a difficult crossroad for us when trying to find small Mahler measures

coming from two-variable polynomials. On the one hand, the known list of small values

from Mossinghoff [26], Otmani et al. [30] and Sac-Épée et al. [35] all come from

polynomials of reasonably small degree. As it appears likely that polynomials of “larger

degree” (a concept we define formally shortly) take a longer time to calculate the Mahler

measure of, one possible avenue for us to focus on is to disregard polynomials above

a certain degree. On the other hand, one may wonder if it is perhaps fruitful to use

this method to explore polynomials of larger degrees, in the hope of finding new small

Mahler measure values.

In any case, we have demonstrated that we need to take caution with our evolved

variant for calculating Mahler measures of two-variable polynomials. Not only does this

only work for reciprocal polynomials – a caveat which we will see in chapters 4 and 5 is

not an issue in the scope of this thesis – we have to balance between polynomials not

being too complicated, whilst still being of interest to us.

2.4 Simplifying Calculations

As has been noted, calculating the Mahler measure of more complicated two-variable

polynomials (those which have a high degree, or those which have a large number of
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terms) can take a long time, regardless of the method we use. As our primary interest is

in searching for small Mahler measures, it is as such important to look at polynomials

which may have a better chance of having small Mahler measure. We explain this in

greater detail later.

However, there are still concerns that arise here. Firstly, there is no guarantee that

good potential candidate polynomials will be sufficiently nice (of a small degree and of

a short enough length). Secondly, this does not help if there are instances where one

may not necessarily be interested solely in polynomials admitting small Mahler measure

values. Though the latter concern here is more hypothetical and outside the scope of

this thesis, the former is a more troubling issue.

As such, we now look at possible ways to simplify polynomials to make calculations

easier. In particular, this means we want to look at ways in which we can take a

polynomial and make it of a smaller degree.

Definition 2.4.1. Let P ∈ C[z1, · · · , zn]. We say that the total degree of a polynomial,

denoted deg(P), is the maximal sum of the powers of all variables amongst all monomials.

Example. Let P (x, y) = x4y3 + x3y + xy4 + y2 + 1. Then, deg(P ) = 7.

The total degree is a basic, somewhat crude, way of deciding how simple a polynomial

may be. Of course, it is not the only tool we should use. However, in a broad sense,

it is reasonable to assume that if we can take a polynomial and reduce its total degree

(without affecting its Mahler measure), then it should be easier to calculate the Mahler

measure of the resulting polynomial.

Another, somewhat obvious, simplification one can do is to only ever calculate

the Mahler measure of irreducible polynomials. Knowing that the Mahler measure is

multiplicative, for a polynomial P = P1 · · ·Pn, with each Pi irreducible, we can calculate

each M(Pi) and multiply the resulting values together. Moreover, we can ignore any

2-Kronecker-cyclotomic factors as well (and, in general, n-Kronecker-cyclotomic factors

when considering polynomials in n variables).

Of course, in the practice of finding polynomials with small Mahler measures, we

will only ever be interested in irreducible polynomials. This is because we expect any
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reducible polynomial with no 2-Kronecker-cyclotomic factors to have a non-small Mahler

measure, as demonstrated below:

Example. Let P (x, y) ∈ Z[x, y] be a reducible polynomial with n factors, say P =

P1 · · ·Pn, and assume that none of these factors are 2-Kronecker-cyclotomic. If M(P ) is

small, then there is at least one Pi such that M(Pi) < (1.37)1/n.

In the case n = 2, this would mean that there is at least one factor, say P1, such

that M(P1) <
√
1.37 = 1.17046999 · · ·. As the smallest known Mahler measure from

two-variable polynomials is 1.25543386 · · ·, we do not expect this to happen.

2.4.1 Primitive Polynomials

One important idea is to look at polynomials which are “primitive”; that is, polynomials

which are, in some sense, as simple as possible. We want our concept of primitive to be

something that allows us to “primitize” a polynomial, whilst fixing the Mahler measure.

In other words, we want to have some way of taking a polynomial, and seeing if we can

make it simpler, and so easier to determine its Mahler measure. This tool would be

something to apply after having checked if our polynomial is irreducible (although, in

theory, there is no need to necessarily do this).

We will soon see that there is more than one notion of primitive that can be defined.

Before turning to these, we first fix some notation and results. These will help give some

further intuition to one definition of a primitive polynomial.

Definition 2.4.2. Let z = (z1, · · · , zn), and A = (aij) be some n× k matrix. We then

define zA to be the following k-tuple:

zA := (za111 · · ·zan1
n , · · · , za1k1 · · ·zank

n ) .

Proposition 2.4.3 (McKee and Smyth [25], Proposition 2.9). Let P ∈ R[z1, · · · , zn]

and A ∈ GLn(Z). Then:

M(P(z )) =M(P(zA)) .

Proof. We provide the heart of the concept of the proof here; full details are in McKee

and Smyth [25].
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If we think of the integrals involved when defining the Mahler measure as defining

the ‘volume’ of a given region, then replacing z by zA will multiply the region by a factor

of |det(A)| . However, we find that the Jacobian of the necessary change of variables is

also |det(A)| , and so cancels the factor of |det(A)| which we had found.

Definition 2.4.4. Let P ∈ Z[z1, · · · , zn]. We say that P is strongly primitive if there

is no A ∈ GLn(Z), with |det(A)|> 1, and Q ∈ Z[z1, · · · , zn] for which P(z ) = Q(zA).

This definition comes from Boyd and Mossinghoff [5]. Here, they simply refer to

such polynomials primitive.

Strongly primitive polynomials are of interest because of their total degree. Say we

have a polynomial P which is not strongly primitive. Then, the corresponding Q which

reveals this will have a lower total degree and, by Proposition 2.4.3, will still have the

same Mahler measure. That is to say, checking if a polynomial is strongly primitive is

one quick way of determining if the polynomial we are looking at can be simplified.

At this point, we are saying that a quick and easy way of simplifying the calculation

of the Mahler measure of a polynomial is to ensure it is irreducible and strongly primitive.

We are not claiming this is all the simplification we can do, nor that this is the best we

can do.

Unfortunately, it is not obvious to the eye whether a polynomial is strongly primitive

or not. However, there is a quick and effective way to check. As our focus here is

on two-variable polynomials, we look specifically at how to do this for two-variable

polynomials P . The following discussion makes references to lattices; the unfamiliar

reader is referred to Appendix B for an overview of the necessary concepts.

Let P (x, y) =
∑

i cix
aiybi , with ai, bi, ci ∈ Z. We first construct a matrix M =a1 a2 · · ·

b1 b2 · · ·

. We can then construct a lattice L, which is the Z-span on the columns

of M . We have that rank(L) ≤ 2, but the only case we are interested in is when

rank(L) = 2. The case rank(L) = 0 is trivial, and rank(L) = 1 occurs when the columns

of M are not linearly independent, effectively giving us a single variable polynomial,

hence why the rank(L) = 2 case is the only one of interest.

We now briefly describe how, for two-variable polynomials, we approach this in



2.4. Simplifying Calculations 55

practice, using PARI/GP. It is perhaps better understood with Example 2.4.5, which

follows after, however.

If we have P (z) = Q(zA), for some |det(A)|> 1, then the map z 7→ zA sends Z2 to

a proper sublattice of Z2. Now, assuming that P has t non-zero terms, then M will be a

2× t matrix. We can use the inbuilt LLL algorithm feature in PARI/GP, qflll, to find

an LLL reduction of the lattice L. Specifically, if qflll( M ) = U, then the columns of

MU = A, with A ∈ GL2(Z), give us an LLL-reduced basis for the lattice L.

Moreover, we have |det(A)|= 1 if and only if the lattice is the whole of Z2. This

occurs if and only if P is strongly primitive. Equally, |det(A)|> 1 allows us to recover a

strongly primitive Q, with the same Mahler measure as P . This will be demonstrated in

the following examples.

Example 2.4.5. Let P (x, y) = 1 + xy2 + x2y.

We have M =

0 1 2

0 2 1

. Using PARI/GP, we have U =


0 0

−1 1

1 0

. This gives us

A =MU =

 1 1

−1 2

. We note that |det(A)|= 3, so P is not strongly primitive.

As noted, we are interested in strongly primitive polynomials because they make

computing the Mahler measure of a polynomial quicker. However, there will likely be

polynomials we are interested in which are not strongly primitive. Hence, we want to be

able to strongly primitize polynomials: take a polynomial P , and turn it into a strongly

primitive polynomial, without affecting the Mahler measure.

Fortunately, it is reasonably straightforward to expand what we know to create a

procedure for strongly primitizing a polynomial. When doing this, we also need to

remember the coefficients of each term of our original polynomial P . This is easy to

do in isolated examples, and can also do included with any code routines by creating a

companion vector : c =

(
c1 c2 · · ·

)
.

We know that our matrix A ∈ GL2(Z) maps Z2 onto L by left multiplication. As such,

A−1 ‘reverses’ this: it maps L onto Z2 by left multiplication. So, forM =

a1 a2 · · ·

b1 b2 · · ·

,
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we have that A−1M ∈ Mat2×t(Z) will correspond to a strongly primitive polynomial,

which is the strongly primitized version of P .

More explicitly, for A−1M =

α1 α2 · · ·

β1 β2 · · ·

, the strongly primitized version of P ,

which we will denote as Q = prim(P ), can be read as:

Q(x, y) =
∑
i

cix
αiyβi . (2.15)

Example 2.4.5 (Continued). We note that our companion vector in this instance is

c =

(
1 1 1

)
.

We have that A−1 =

2/3 −1/3

1/3 1/3

. This gives us A−1M =

0 0 1

0 1 1

. From this,

we follow (2.15) to read that prim(P ) = Q(x, y) = 1 + y + xy.

Remark. A−1 does not need to have integer entries (in fact, it probably will not in

many instances). However, A−1M always will have integer entries.

Remark. By Proposition 2.4.3, we know that this procedure does not change the Mahler

measure of the polynomial, since P (z) = Q(zA).

We can also look at a the notion of primitive from a different perspective, which is

somewhat weaker.

Definition 2.4.6. Let P ∈ Z[z1, · · · , zn]. We say P is weakly primitive if, for each i,

it can be viewed as a single variable polynomial in zi, but not in zi
di for any di ∈ Z>1.

A benefit this has over our definition of strongly primitive is that it is much easier to

see by eye if a polynomial is weakly primitive or not. Furthermore, we are able to take

any polynomial which is not weakly primitive and make it weakly primitive: for each i

in which P can be viewed as a single variable polynomial in zidi , replace zidi with zi for

the highest possible di. So, we are able to weakly primitize a polynomial.

As with strongly primitizing a polynomial, weakly primitizing a polynomial does not

affect its Mahler measure. This gives us a way of reducing the degree of a polynomial,

in a hope of simplifying the calculation of its Mahler measure.
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There are two downsides to this, however. Firstly, this does not simplify calculations

much. Routines which calculate the Mahler measure of a two-variable polynomial will

not be noticeably slowed down when dealing with a polynomial which is not weakly

primitive compared to one which is. More importantly – as our naming might suggest –

a weakly primitive polynomial may not be strongly primitive.

Example. P (x, y) = 1 + x2y + xy2 is weakly primitive, but (as seen in Example 2.4.5)

not strongly primitive.

On the other hand, we have the following Proposition which can describe this:

Proposition 2.4.7. If P is strongly primitive, then P is weakly primitive.

Proof. We show the contrapositive: if P is not weakly primitive, then P is not strongly

primitive. So, assume P is not weakly primitive.

This means there is at least one variable in P , say zk, such that P can be viewed as

a polynomial in zkdk , for some dk ∈ Z>1. Let us write P in the following form:

P(z1, · · · , zn) =
∑
i

ciz1
f1i · · · znfni ,

where ci, fj i ∈ Z, and there are exactly t non-zero ci.

We can then construct a matrix of the powers of these coefficients:

M =



f11 f12 · · ·

f21 f22 · · ·
...

fk1 fk2 · · ·
...

fn1 fn2 · · ·


.

As P can be viewed as a polynomial in zkdk , that means there exists some δ ∈ Z>1
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such that δ|fki for each i. Letting fki = δFki, we can rewrite M as:

M =



f11 f12 · · ·

f21 f22 · · ·
...

δFk1 δFk2 · · ·
...

fn1 fn2 · · ·


= D



f11 f12 · · ·

f21 f22 · · ·
...

Fk1 Fk2 · · ·
...

fn1 fn2 · · ·


, (2.16)

where D is a diagonal n× n matrix with 1 values in all diagonal entries except in the

(k, k)-entry, which has value δ.

We can now construct a lattice L, which is the Z-span on the columns of M , and find

a matrix U such that MU = A, with A ∈ GLn(Z), which gives us an LLL-reduced basis

for the lattice. Following (2.16), we can write M = DM1, and so we have A = DM1U .

Taking determinants and absolute values, we have that:

|det(A)| = |det(DM1U)| ,

= |det(D)||det(M1U)| ,

= δ|det(M1U)| .

Our matricesM1 and U have entries in Z, and det(M1U) ̸= 0, meaning det(M1U) ≥ 1.

Since we have that δ > 1, |det(A)|> 1. Therefore, P is not strongly primitive.

As such, it is more important to focus on ensuring we work with strongly primitive

polynomials. However, we will look again at weakly primitive polynomials, more

specifically, single variable polynomials, later, in chapter 6.

2.4.2 Further Reductions

Our aim remains to make polynomials which we are interested in knowing the Mahler

measure of as simple as possible. Looking at strongly primitive polynomials is a good

start, but it is natural to ask if there is anything else we can do to further simplify our

polynomials.
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Before we move on, let us look at an example to motivate why we might ask such a

question.

Example 2.4.8. Let P (x, y) = 1 + x2y + xy2.

We know that prim(P ) = 1 + y + xy, and this in particular means that M(P ) =

M(prim(P )). However, consider the polynomial Q(x, y) = 1 + x + y. We have that

M(Q) =M(P ).

We further note that if we take prim(P ) = 1 + y + xy, and do a substitution taking

x 7→ x/y and y 7→ y, we then get Q(x, y) = 1 + x+ y.

Here, we see that the total degree of Q is less than that of P ; making it in some

sense “more simple”. We do note, however, that Example 2.4.8 is a rather basic one. By

this, we mean that any method for calculating the Mahler measure of a two-variable

polynomial will return an answer for M(Q) and M(prim(P )) in effectively the same

time in this instance. At the very least, it makes no difference in practice which is more

effective, or quicker, in this instance.

However, this does raise a potential problem, in theory. When we consider polynomials

of higher total degree, or with more terms, it could be the case that a strongly primitive,

irreducible polynomial is not as simple as we would perhaps like. It could even be a case

that polynomials of interest are already strongly primitive and irreducible themselves.

As these more complex polynomials are ones which we expect to take a longer time to

compute the Mahler measure for, this means we could spend significantly more time on

calculations than necessary.

As such, it would be beneficial to know if there is a way to further simplify our

polynomials, or if there is another explanation for why these polynomials share the same

Mahler measure. If it is the former, we can then create and implement a routine to

further simplify any given polynomial before calculating its Mahler measure. If it is the

latter, we have to accept the likelihood of increased time spent on calculations.

In the instance of Example 2.4.8, there is a way to further simplify prim(P ) to Q,

which we outline in chapter 6, when we formalise the concept presented as a notion of

“equivalence”. The reasoning for not detailing this idea of further reduction is as follows:
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• The theory is still in its infancy. Whilst we have ways to, in some sense, simplify

some polynomials further, we do not have a complete understanding of the theory.

• There is little need to introduce such reduction now. For the polynomials we

will look at for our experiments in chapter 5, this concept of simplification is not

particularly necessary in most instances.

• This notion of “equivalence” we introduce opens discussion to a broader topic of

study. Indeed, as we will see in chapter 6, we focus on a more general question

of ‘When do polynomials share the same Mahler measure?’ rather than ‘Can we

simplify a polynomial without changing its Mahler measure?’.

In short, what we have firmly introduced so far is enough for the calculations

presented in this thesis, and any further techniques for making our calculations simpler

are still being improved upon.

2.5 Dimension vs Variable

In this Section, we address an interesting subtlety which arises particularly when

considering small Mahler measures of polynomials in more than one variable. As

mentioned in Section 1.2, the smallest known Mahler measure coming from two-variable

polynomials is 1.25543386 · · · . However, this is not exactly true.

Example. Let P (x, y) = y(x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1). More precisely,

P (x, y) = yΛ(x).

By Lemma 1.2.6, we know that the Mahler measure of polynomials in several variables

is multiplicative. Thus:

M(P ) =M(y)M(Λ(x)) = λ .

This example certainly contradicts our earlier claim, and it is also easy to see why.

A tempting quick fix would be to be more precise with our claim, and say that the

smallest known Mahler measure coming from irreducible two-variable polynomials is

1.25543386 · · ·. However, once again, this is not exactly true.
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Example. Let P (x, y) = Λ(xy). More explicitly, we have that:

P (x, y) = y10x10 + y9x9 − y7x7 − y6x6 − y5x5 − y4x4 − y3x3 + yx+ 1 .

In this case, P is irreducible, but calculating the Mahler measure shows M(P ) = λ.

This does mean that we can find plenty of examples of two-variable polynomials,

and, indeed, irreducible polynomials, with Mahler measure smaller than 1.25543386 · · · .

For example, there are 236 examples of single variable polynomials with Mahler measure

less than 1.25 (tiny Mahler measures). If we make any monomial substitution – that

is to say, if we replace the single variable with any monomial in two variables – to any

of these polynomials with tiny Mahler measure, we will find a two-variable polynomial

with Mahler measure less than 1.25543386 · · ·.

This minor issue arises in some texts and situations. Ultimately, this is down

to a somewhat unspoken convention about how precise we are with our restrictions

and definitions of “smallness” of Mahler measures coming from polynomials in several

variables. We address this situation explicitly here, to add clarity.

Firstly, we make the following claim:

Lemma 2.5.1. We can calculate the Mahler measure of a Laurent polynomial in any

number of variables.

It is not immediately obvious that this should be true. As such, we give the following

argument to help justify this:

Proof. Similarly to Definition 2.4.2, we write znj = z1
j1 · · · znjn . Let

P ∈ Z[z1, z1−1, · · · , zn, zn−1] be a Laurent polynomial. A somewhat crude way of writing

P is:

P(zn) =
∑
j∈J

ajznj ,

where J = J1 ⊕ J2 ⊕ · · · ⊕ Jn, with each aj ∈ Z and each Ji ⊂ Z.

Now, for each i, define ti = |minj∈Ji j|. Then, we can find the linear polynomial

z1
t1 · · · zntnP(zn), and we note that M(z1

t1 · · · zntnP(zn)) =M(P(zn)).
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We now work towards defining the dimension of a polynomial. However, it is perhaps

best understood by first looking at an example, where we introduce necessary concepts

as we go along. We will make a formal definition afterwards.

Example 2.5.2. Let P (x, y) = x2 + xy + y2.

Whilst the powers of each monomial are positive, we can still adopt the notation

introduced earlier. In other words, we can consider writing our polynomial in the form

P (x, y) =
∑

j∈J ajzn
j, where J = J1 ⊕ J2.

We first find the convex hull of the vectors j. This is the intersection of all convex

sets containing all the j, where these j are elements in Z2, such that aj ̸= 0. We call the

resulting object the exponent polytope of P .

In this case, these vectors are J = {(2, 0), (1, 1), (0, 2)}. So, the exponent polytope

of P is the straight line, of gradient −1, joining (0, 2) to (2, 0), as seen in the following:

//

OO

x

y

21

2

1

0

.

Next, we shift this exponent polytope so that it passes through the origin, and then look

at the subspace it spans after suitable scaling:

//

OO

x

y

21

2

1

0

.



2.5. Dimension vs Variable 63

We then define the dimension of the polynomial P , which we denote as dim(P ), to

be the dimension of this subspace. In this case, it is clear that the dimension of this

subspace, a straight line contained in the plane, is 1, so we have that dim(P ) = 1.

Though this example is rather basic, it does demonstrate the heart of the concept.

We now formalise the concepts we have just introduced:

Definition 2.5.3. Let P(zn) =
∑

j∈J ajzn
j, where J = J1 ⊕ J2 ⊕ · · · ⊕ Jn, with each

aj ∈ Z and each Ji ⊂ Z.

The exponent polytope of P is the convex hull of the j ∈ Zn ⊂ Rn such that aj ̸= 0.

Definition 2.5.4. The dimension of P is the dimension of the subspace spanned by

the exponent polytope of P, after it has been shifted to pass through the origin.

The dimension of the polynomial has a further benefit. If we have a polynomial P

in n variables such that its dimension is k < n, then we can transform our polynomial

into a Laurent polynomial in k variables. This can, in theory, simplify calculations for

finding the value of M(P).

Example 2.5.2 (Continued). For P (x, y) = x2+xy+y2, we know that dim(P ) = 1. We

now demonstrate how we can transform P into a single variable polynomial. To do this,

we take any given point on the exponent polytope, (j1, j2), and consider P (x, y)/xj1yj2 .

For example, taking (j1, j2) = (1, 1) gives us:

P (x, y)

xy
=
x

y
+ 1 +

y

x
.

We then find a suitable substitution to transform this into a single variable Laurent

polynomial. We note that the substitution x
y = z gives us the polynomial z + 1 + 1/z.

When can then calculate the Mahler measure of this fairly straightforwardly. We

have that:

M(z + 1 + 1/z) =M (z(z + 1 + 1/z))

=M(z2 + z + 1) .
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We know that Φ4(z) = z2 + z + 1, so we have that M(z + 1 + 1/z) = 1, and thus

M(P ) = 1.

Though Example 2.5.2 is somewhat trivial, it again demonstrates the heart of the

concepts being discussed here. In particular, we can see how we can simplify calculations

by considering the dimension of the polynomial, but also we can now address our earlier

concern.

The value 1.25543386 · · · is the smallest known Mahler measure that can be found

from irreducible polynomials of dimension two. Polynomials of dimension two are in

at least two variables, and any that are in more than two variables can be transformed

into a polynomial of two variables. The adopted convention is that when we discuss the

smallest Mahler measure that can be obtained from a polynomial in n variables, we do

mean the smallest Mahler measure that can be obtained from an irreducible polynomial

of dimension n.

We can also look at this from a slightly different perspective.

Definition 2.5.5. Let α be an algebraic number which is the Mahler measure of some

irreducible, non-zero integer polynomial P. The dimension of α, denoted dim(α), is

the smallest k such that α =M(P) for such a P in k variables.

From this, we can refocus some of the claims we have previously made. For example,

instead of saying that the value 1.25543386 · · · is the smallest known Mahler measure

that can be found from irreducible polynomials of dimension two, we can say that is the

smallest known Mahler measure value of dimension two.

Example 2.5.6.

Claim: We have that dim(1) = 0.

Justification: Let P = 1. This is an irreducible, non-zero and integer polynomial of zero

variables. As such, 0 is the smallest k such that 1 =M(P) and P has k variables.

Remark. This can be extended for all positive integers.

We can encapsulate some more of our knowledge about dimension, both of a value

and a polynomial, in the following result:
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Proposition 2.5.7. Let α the Mahler measure of some n-variable polynomial P. Then:

dim(α) ≤ dim(P) ≤ n . (2.17)

Proof. We first show that dim(P) ≤ n. In fact, this follows fairly trivially from Definition

2.5.4.

Write:

P(z1, · · · , zn) =
∑
i∈Zn

ciz
i ,

where zi = z1
i1 · · · znin , i = (i1, · · · , in) and only finitely many of the ci ̸= 0. Furthermore,

multiplying P by a suitable Laurent monomial means we can suppose that c0 ̸= 0.

We know that dim(P) is equal to the dimension of the space spanned by the i for

which ci ̸= 0. Since this space is a subspace of Rn, this means that dim(P) ≤ n.

We now show that dim(α) ≤ dim(P). We let dim(P) = d.

Let L be the lattice formed by the Z-span of the i for which we have non-zero ci.

These are integer linear combinations of the i. We can now choose a Z-basis of L:

e1 = (e1,1, · · · , e1,n) ,

e2 = (e2,1, · · · , e2,n) ,
...

ed = (ed,1, · · · , ed,n) .

(2.18)

Additionally, for all i such that ci ̸= 0, we have that i can be written as a Z-linear

combination of these ek.

We can also consider extending to a Z-basis for Zn, by introducing further basis

vectors ed+1, · · · , en, defined as in (2.18). We can then consider:

y1 = z1
e1,1z2

e1,2 · · · zne1,n ,

y2 = z1
e2,1z2

e2,2 · · · zne2,n ,
...

yd = z1
ed,1z2

ed,2 · · · zned,n .

(2.19)
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These are Laurent monomials in z1, · · · , zn.

We can now write each i, for which ci ̸= 0, as a Z-linear combination of e1, · · · , ed.

This gives us:

P(z1, · · · , zn) =
∑
i∈Zn

ci ̸=0

ci y
u(i) , (2.20)

where u(i) is the Z-linear combination of e1, · · · , ed which depends on i, and y(u1,···,ud) :=

y1
u1 · · · ydud .

We have presented P as a Laurent polynomial in d variables in (2.20). However, we

can extend the system presented in (2.19), and consider n monomials in z1, · · · , zn:

y1 = z1
e1,1z2

e1,2 · · · zne1,n ,

y2 = z1
e2,1z2

e2,2 · · · zne2,n ,
...

yd = z1
ed,1z2

ed,2 · · · zned,n ,

yd+1 = z1
ed+1,1z2

ed+1,2 · · · zned+1,n ,

...

yn = z1
en,1z2

en,2 · · · znen,n .

(2.21)

The system presented here in (2.21) is in fact invertible. Thus, we can apply

Proposition 2.4.3, to give:

M(P) =M

∑
i∈Zn

ci ̸=0

ci y
u(i)

 .

Hence, dim(M(P)) ≤ d = dim(P), and so we are done.

A consequence here is that if we are given some value α, and know that α =M(P)

for some P, we are able to determine dim(α). From Proposition 2.5.7, we know that

dim(α) ≤ dim(P), and that this inequality is only strict when α is not a positive integer.

So, we have that dim(α) = 0 if α is positive integer, and dim(α) = dim(P) otherwise.

The main relevance of this for this thesis moving forward is when we turn to extensive
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computations of finding Mahler measures of two-variable polynomials in chapter 5. We

need to be alert to the possibility that some the Mahler measure values we are considering

do, in fact, have dimension less than two. In general, we will continue to refer to “two-

variable polynomials”, under the assumption that we mean “two-variable polynomials

whose dimension is also two”. Whilst our focus later will be on Mahler measure values

of dimension two, our methods for finding these values apply only to polynomials of two

variables, and not any higher, hence the need to make this distinction.



Chapter 3

Digraph Theory

In this chapter, we expand upon Section 1.3.2, which introduced the concept of the

Mahler measure of a graph. We first look at the known results related to simple graphs,

and how these particular combinatorial objects are not overly helpful in our quest to find

small Mahler measures. From here, we move to looking at more general graph theoretic

objects, which will be much more fruitful with helping us find small Mahler measures,

but come at a cost: we lose some powerful graph theoretic tools. This means we have to

develop different techniques for working with digraphs specifically.

Small parts of Section 3.2 have previously appeared in Coyston and McKee [9].

3.1 Simple Graphs and Mahler Measures

For avoidance of doubt, we first recall and fix some straightforward definitions:

Definition 3.1.1. A graph G is a pair (V,E), where V is a set of elements called

vertices, and E is a set of elements of paired vertices, called edges.

There are many algebraic notions which are of interest to those studying graphs,

though the one of main interest to us here is the adjacency matrix, and the resulting

characteristic polynomial. For a graph G on n vertices, one can label the vertices

1, 2, · · · , n. We then have that the adjacency matrix of the graph is an n× n matrix, say
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AG, with entries aij such that:

aij :=


1, if ij is an edge ,

0, otherwise .

The characteristic polynomial of the graph, χG, is then defined to be the characteristic

polynomial of AG. It is also a well known fact that the characteristic polynomial of the

graph is invariant of how we label the vertices of our graph.

A graph is a very general object. However, there are several different, more particular,

variants of a graph:

• We can direct our edges; specifying the order in which the paired vertices are

viewed.

• We can attach weights to our edges and vertices; associating a (usually integral)

number to each edge and vertex.

• We can have multiple edges between a pair of vertices; that is to say, E can be a

multiset.

• We can have loops; an edge where the pair of vertices are the same.

Depending on the situation and need, some of these additions can make working with

graphs more complicated. However, there is much that can still be gained from studying

the “simplest” type of graphs.

Definition 3.1.2. A simple graph is a graph which is undirected, unweighted and has

neither multiple edges nor loops.

Though many authors will refer to these plainly as graphs, we will be more precise

and always refer to these as simple graphs from now. If we refer to a “graph”, it should

be assumed that this is the most general notion of a graph.

We now recall Definition 1.3.1, in simpler terms:

Definition 3.1.3. The Mahler measure of a graph G is the Mahler measure of its

adjacency matrix.
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Example. Let G be the following simple graph, with its vertices labelled 1 to 6:

2

1

3 4
6

5

.

We have that the adjacency matrix of G is:

AG =



0 0 1 0 0 0

0 0 1 0 0 0

1 1 0 1 0 0

0 0 1 0 1 1

0 0 0 1 0 0

0 0 0 1 0 0


,

which gives us characteristic polynomial: χG(x) = x6 − 5x4 + 4x2.

We then calculate the reciprocal polynomial of this, as defined in Definition 1.1.12,

giving us: RG(z) = z12 + z10 − z8 − 2z6 − z4 + z2 + 1. We finally note that M(RG) = 1,

and so M(G) = 1.

Example. Consider K4, the complete graph on 4 vertices. The characteristic polynomial

is χK4 = x4 − 6x2 − 8x − 3, and RK4 = z8 − 2z6 − 8z5 − 9z4 − 8z3 − 2z2 + 1. Thus,

M(K4) = 2.61803398 · · ·.

The latter example here shows that Mahler measures of simple graphs are not always

trivial or small, and that even common simple graphs do not give us small Mahler

measures.

A natural question is when do simple graphs have trivial Mahler measure, and when

do they have small Mahler measure. Fortunately, both of these questions have been

answered.

3.1.1 Interlacing

Interlacing is a powerful tool which relates specifically to matrices. By considering

adjacency matrices of simple graphs, it can also be a powerful tool in graph theory too.
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Definition 3.1.4. For any real, symmetric n×n matrix M , we can label the eigenvalues

of M in non-increasing order: µ1(M) ≥ µ2(M) ≥ · · · ≥ µn(M).

Let A and B be real, symmetric matrices of size n × n and m × m respectively,

with n ≥ m. We say that the eigenvalues of B interlace the eigenvalues of A if, for

i = 1, 2, · · · ,m, we have:

µi(A) ≥ µi(B) ≥ µn−m+i(A) .

Proposition 3.1.5 (Interlacing Theorem). Let A be a real, symmetric n×n matrix, with

eigenvalues µ1(A) ≥ µ2(A) ≥ · · · ≥ µn(A). Let B be a submatrix of A obtained by deleting

the i-th row and i-th column of A, with eigenvalues µ1(B) ≥ µ2(B) ≥ · · · ≥ µn−1(B).

Then, the eigenvalues of B interlace with those of A; that is to say:

µ1(A) ≥ µ1(B) ≥ µ2(A) ≥ · · · ≥ µn−1(B) ≥ µn(A) .

A proof of this can be found in Godsil and Royle [13, p.193], who give a more

general statement.

It is easy to see the relation and possible uses related to simple graphs here. Indeed,

there is a common graph theoretic object which exists:

Definition 3.1.6. Let G = (V,E) be a graph. An induced subgraph of G is the graph

formed by taking a subset of the vertices V , say VI , and all edges of E that connect any

vertices in VI together.

So, for a graph G, if we know its eigenvalues (that is to say, if we know the eigenvalues

of its adjacency matrix), and we then remove a vertex, as well as all edges incident with

it, then the eigenvalues of this induced subgraph interlace with the eigenvalues of G.

We will use interlacing to show that, for an induced subgraph H of a simple graph

G, M(H) ≤M(G). However, our current definition for the Mahler measure of a graph

does not make use of the eigenvalues of its adjacency matrix. As such, we need the

following statement to help us:
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Lemma 3.1.7. Let A be an n×n matrix and µ1(A), · · · , µn(A) be its eigenvalues. Then:

M(A) =

n∏
i=1

max

{
max

(
1,

|µi(A) +
√
µi(A)

2 − 4 |
2

)
,

max

(
1,

|µi(A)−
√
µi(A)

2 − 4 |
2

)}
.

(3.1)

Prior to proving this, it is helpful to further understand the behaviour of the two

functions included here.

Lemma 3.1.8. Let:

f(x) =
|x+

√
x2 − 4 |
2

and g(x) =
|x−

√
x2 − 4 |
2

.

Then:

I. We have f(x)g(x) = 1 for all x ∈ C ,

II. On the interval [−2, 2], f(x) = g(x) = 1 ,

III. Outside the interval [−2, 2], we have that f(x) is strictly increasing, and g(x) is

strictly decreasing .

We also provide a visualisation in Figure 3.1, showcasing f(x) and g(x), to further

demonstrate the behaviour of these functions.

Figure 3.1: The functions f(x) and g(x).
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Proof. We prove each claim individually.

Proof of Claim I: This is easy to see directly:

f(x)g(x) =
|x+

√
x2 − 4 |
2

|x−
√
x2 − 4 |
2

=
|x2 −

(
x2 − 4

)
|

4

= 1 .

Proof of Claim II: Let x ∈ [−2, 2] and consider f(x). As x ∈ [−2, 2], we can write:

√
x2 − 4 = i

√
4− x2 .

Thus, we have:

f(x) =
|x+ i

√
4− x2 |
2

=

√
x2 + (4− x2)

2

= 1 .

As, by Claim I, f(x)g(x) = 1 for all x ∈ R, we thus have g(x) = 1 in [−2, 2] as well.

Proof of Claim III: We split this into two different cases. Firstly, consider x > 2. In

this case, f(x) = x+
√
x2−4
2 . Next, we note that that:

f ′(x) =
1

2
+

x

2
√
x2 − 4

> 0 ,

and so f(x) is strictly increasing. Equally, as f(x)g(x) = 1, this must mean g(x) is

strictly decreasing when x > 2.

Now consider x < −2. In this case, f(x) = −x−
√
x2−4

2 . Next, we note that that:

f ′(x) = −1

2
− x

2
√
x2 − 4

> 0 ,

and so again f(x) is strictly increasing and g(x) is strictly decreasing when x < −2.
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Proof of Lemma 3.1.7. We recall that M(A) = M(RA(z)), where we write RA(z) =

znχA(z + 1/z).

As χA(µi(A)) = 0 for each i, set z + 1/z = µi(A). Solving for z here gives us:

z =
µi(A)±

√
µi(A)2−4
2 . Due to our understanding of this function from Lemma 3.1.8, we

can put this into (1.2), the result then follows.

This now gives us enough to show that, for some simple graph G, the Mahler measure

of any induced subgraph of is at most M(G).

Proposition 3.1.9. Let G be a simple graph, and H an induced subgraph of G. Then,

M(H) ≤M(G).

Proof. We prove this by induction. We write Hk to represent an induced subgraph of G

that has had k vertices removed.

Now, let A and B1 be the adjacency matrices of G and H1 respectively. As H1 is an

induced subgraph of G, the eigenvalues of B1 will interlace with those of A:

µ1(A) ≥ µ1(B1) ≥ µ2(A) ≥ · · · ≥ µn−1(B1) ≥ µn(A) .

When combined with (3.1), it is easy to see that M(B1) certainly cannot exceed M(A),

with equality possible with appropriate equality of eigenvalues between A and B1.

We can now continue inductively, since Hj+1 is an induced subgraph of Hj . Setting

Hk = H for a desired k gives us our result.

3.1.2 Simple Cyclotomic Graphs

We now briefly look at all simple graphs with trivial Mahler measures.

Definition 3.1.10. A graph with Mahler measure 1 is called a cyclotomic graph.

When searching to see if a simple graph G is cyclotomic, we have two options. The

first option would be as we have already seen: find the reciprocal polynomial, RG,

and calculate the Mahler measure of this polynomial (or, alternatively, check if it is

Kronecker-cyclotomic). The second option involves looking at its eigenvalues.
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Lemma 3.1.11. A (simple) graph G is cyclotomic if and only if all of its eigenvalues

lie in the interval [−2, 2].

Proof. Let A be the adjacency matrix of G. From Lemma 3.1.7, we see that if all our

eigenvalues are such that |µi(A)±
√

µi(A)2−4|
2 is at most 1 for each i, then M(A) = 1, and

so G is cyclotomic.

We next recall Case II from the proof of Lemma 3.1.8. This shows that whenever

µi(A) ∈ [−2, 2], we have that |µi(A)±
√

µi(A)2−4|
2 = 1. Thus, if all µi(A) ∈ [−2, 2],

M(G) = 1.

Now assume there exists some eigenvalue µj(A) outside the interval [−2, 2]. Clearly,

|µj(A) ±
√
µj(A)

2 − 4|> 2 and so |µj(A)±
√

µj(A)2−4|
2 > 1. Thus, if there is such an

eigenvalue µj(A) /∈ [−2, 2], M(G) ̸= 1. So, if M(G) = 1, then all µi(A) ∈ [−2, 2].

Corollary 3.1.11.1. Let G be a simple cyclotomic graph. Then, any induced subgraph

of G is also cyclotomic.

Proof. This follows immediately from the results of Lemma 3.1.7 and Lemma 3.1.11.

As such, a categorisation of simple cyclotomic graphs will likely showcase families of

simple graphs. Indeed, this is the case:

Proposition 3.1.12 (Smith [38]). The connected cyclotomic simple graphs are precisely

the induced subgraphs of the simple graphs: Ẽ6, Ẽ7, Ẽ8, Ãn (for n ≥ 2) and D̃n (for

n ≥ 4), as seen in Figures 3.2 and 3.3.

Ãn

· · ·

· · · D̃n

· · ·

Figure 3.2: The family examples Ãn and D̃n.

Remark. We have the convention here that the number of vertices of Ãn and D̃n is

one more than the subscript. In other words, these are on n+ 1 vertices.
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Furthermore, it is worth noting that Ãn = Cn+1, the commonly used notion for the

cycle graph on n+ 1 vertices.

Ẽ6 Ẽ7

Ẽ8

Figure 3.3: The sporadic examples Ẽ6, Ẽ7 and Ẽ8.

Remark. Again, we note that the number of vertices in each of these examples is one

more than the subscript.

We note that in particular, Ãn and D̃n are true ‘families’, and the remaining three

are ‘sporadic’ examples. An immediate consequence of this result is that we have the

cycle graph on n vertices, Cn = Ãn−1, and the path graph, Pn, are cyclotomic.

3.1.3 Simple Graphs with Small Mahler Measure

We now turn our attention to simple graphs which have small Mahler measure. A

complete list of simple graphs with small Mahler measure has been found, which we

state in the following Proposition:

Proposition 3.1.13 (McKee and Smyth [24]). Let Ta,b,c be the tree graph represented

in Figure 3.4.
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· · ·︸ ︷︷ ︸
· · ·

· · ·

a vertices

︸ ︷︷ ︸
b vertices

︸ ︷︷ ︸
c vertices

Figure 3.4: The tree Ta,b,c.

Then, the following are the only small Mahler measures that can be found from any

simple graph:

• M(T1,2,6) = λ ,

• M(T1,2,7) = 1.23039143 · · · ,

• M(T1,2,8) = 1.26123096 · · · ,

• M(T1,2,9) =M(T1,3,4) = 1.28063815 · · · ,

• M(T1,2,10) = 1.29349311 · · · .

To have only five different Mahler measures be found from simple graphs is, obviously,

a very disappointing outcome. If we were to further restrict ourselves to tiny Mahler

measures (of which only a finite number are known), we only find two of the current

known 236 values, which is again a disappointing return.

We have already mentioned that simple graphs are not as fruitful as we could have

hoped they would be for finding small Mahler measures. However, as we have alluded

to, there is still much to take away from this. Indeed, McKee and Smyth [24] find small

Mahler measures coming from a more broader type of graph (we will explore these types

of graphs shortly).

Perhaps a glimmer of hope, however, to take from Proposition 3.1.13 is that they

can all be found from a specific family of graphs. Whilst at this stage it is too soon to
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say with certainty, this at least suggests that, when looking at broader types of graphs

and trying to find small Mahler measures, we should aim to look for families of graphs.

Indeed, this is a sensible idea to consider in the first place, but this result at least

reaffirms that this is worthwhile.

3.2 Digraphs

We have seen that, whilst simple graphs allow us to use powerful graph theoretic tools

to aid us, they are not versatile enough to help us find many small Mahler measures.

As such, we should look further afield and study more general graphs. However, as

previously alluded, this will come at a cost, which we will describe shortly. Therefore,

we should not be looking at too general a graph.

We choose to expand the number of graphs we look at by including the following

possibilities:

• We allow arcs, which roughly speaking can be thought of as a “directed edge”, in

that the order of the vertices matters. We explain this in more detail shortly.

• We attach weights to our arcs.

• We allow loops on our vertices.

In fact, we will look at a very specific type of graph:

Definition 3.2.1. A charged signed digraph is a graph G such that:

• Each arc is signed; it is given a weight of +1 (positively signed) or −1 (negatively

signed),

• Each vertex is charged; it is given a value of either +1 (positively charged), −1

(negatively charged) or 0 (neutrally charged, or uncharged).

For sake of simplicity, we refer to these as digraphs throughout. Most other authors

use “digraph” to mean a simple graph with the inclusion of directed arcs, but that is not

the case here, and these should not be confused here.
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Upon first viewing, the idea of a charged vertex may seem a little unusual. However,

one alternative way of thinking about them, albeit in a somewhat clunky fashion, is as

a signed loop attached to a vertex. So, a positively charged vertex is the same as the

vertex having a loop of weight 1 attached to it, and a negatively charged vertex is the

same as the vertex having a loop of weight −1 attached to it.

Furthermore, we need to take care when talking about edges (and arcs) now. With

simple graphs, we define an edge as a pair of vertices, and the order of this pair does

not matter. An arc, as previously mentioned, is like a directed edge, in the sense that

the order of the pair of vertices matters. For our digraphs, we also have signs attached

to them.

So, if we have vertices v1, v2, and a signed arc exists from v1 to v2, and a signed arc

of the opposing sign exists from v2 to v1, then there does not exist any edge between v1

and v2. However, if there are arcs from v1 to v2 and v2 to v1 with the same sign, we say

there is a signed edge between v1 and v2.

One reason for the particular nomenclature and descriptions of these digraphs is to

make the drawing of them as straightforward as possible. There are two different ways

for depicting arcs and edges in a digraph, which we see in Tables 3.1 and 3.2.

Object Meaning

Uncharged vertex

+ Positive vertex

− Negative vertex

v1 v2 No arc between v1 and v2

//v1 v2 Positive arc from v1 to v2

//v1 v2 Negative arc from v1 to v2

v1 v2 Positive edge between v1 and v2

v1 v2 Negative edge between v1 and v2

Table 3.1: All the possible objects that can be used in a digraph, and their literal

meaning.
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Object Meaning

v1 v21
0

Positive arc from v1 to v2

v1 v20
1

Positive arc from v2 to v1

v1 v2−1
0

Negative arc from v1 to v2

v1 v20
−1

Negative arc from v2 to v1

v1 v21
1

Positive edge between v1 and v2

v1 v2−1
−1

Negative edge between v1 and v2

Table 3.2: An alternative way for representing arcs and edges digraphs.

In Table 3.2, we read the value of the sign of an arc between v1 and v2 by seeing

what number is ‘on the left’ when travelling along the drawn line from v1 to v2.

Example 3.2.2. Figure 3.5 demonstrates a digraph using both of these forms of notation:

+

−

+

−

OO

//

oo

−1

−1

1 0

−1

1

1 1

Figure 3.5: The same digraph under different notation.

Throughout this thesis, we will use a blended approach when drawing digraphs,

utilising depictions from either Table where convenient and sensible to do so.

We fix some final pieces of notation which will be used throughout. If we wish to

indicate the presence of a vertex whose charge is not specified, this will be represented

as:

∗ .

Additionally, if we wish to indicate the presence of a vertex whose charge is specified as
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C, but not yet known, this will be represented as:

C .

Remark. We adopt the follow convention with our notation: A charge C is represented

in a matrix entry, and any corresponding equations, by c.

To further increase the clarity of this notation, we have that C ∈ {+,−, •} and

c ∈ {+1,−1, 0} respectively. So, C is a pictorial representation of a charge for a vertex,

and c is the corresponding numerical value.

Example. The following is a digraph G, which is drawn using our “blended approach”

of notation, and has a vertex whose charge is specified as C:

C

−

1 0

−1

1 .

This has adjacency matrix:

AG =



0 −1 0 1

−1 c 0 0

0 1 0 −1

1 0 1 −1


.

It may seem unclear why we need to have these two different pieces of notation. In

short, there are situations where we may need to represent a vertex whose charge is not

specified, but the charge itself is inconsequential to anything which follows in terms of

calculations or results. In this case, we use the former piece of notation. However, there

are times where the charge will have a consequence, which would be a situation when

we use the latter notation.

Definition 3.2.3. We say a path on vertices v1, · · · , vn is totally positive if it consists

only of positive edges between vi and vi+1, for 1 ≤ i ≤ n− 1.
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A parallel definition exists for totally negative.

In turn, we use

t and t

vertex i vertex j vertex i vertex j

to represent totally positive and totally negative paths with t additional neutral vertices

(and so t+ 1 positive or negative edges respectively) between vertices i and j.

For example, we have:

∗ 3 = ∗ .

Remark. For avoidance of doubt, whenever we use these representations in visualisations

of digraphs, it will only ever be to add neutral vertices, regardless of the charge of vertices

at either end of the path.

In terms of the adjacency matrix, digraphs are much more broad than simple graphs.

The adjacency matrices of simple graphs only have {0, 1}-entries, are symmetric and only

have 0-entries on the diagonal. The adjacency matrices of digraphs have {−1, 0, 1}-entries,

are not necessarily symmetric and can have {−1, 0, 1}-entries on the diagonal.

This means that the number of possible Mahler measure values increases dramatically

too. It is easy to see that this gives us significantly more matrices with different collections

of eigenvalues, and different characteristic polynomials and, as such, different reciprocal

polynomials too. In turn, this gives us hope that studying these digraphs may give us

significantly more small Mahler measure values.

3.3 Digraphs and Mahler Measures: Key Examples

3.3.1 Cyclotomic Digraphs: An Unfulfilled Quest

An interesting question to ask is whether there is an extension of Proposition 3.1.12;

that is, if there is a complete classification of (connected) cyclotomic digraphs. The

answer here is “no”. However, we will soon see that there is still a reasonably strong
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related result, as shown by McKee and Smyth [23], in Theorems 3.3.3 and 3.3.4.

For now, though, it is useful to look at certain examples. Furthermore, we will verify

that certain families of digraphs are indeed cyclotomic prior to introducing the related

classification from McKee and Smyth, for reasons which will soon become clear.

Example. Let G be the digraph that appears in Figure 3.5.

Labelling the vertices clockwise starting from the top-left vertex, this gives adjacency

matrix:

AG =



0 −1 0 1

−1 1 0 0

0 1 0 −1

1 0 1 −1


,

and characteristic polynomial χG(x) = x4 − 2x2 − x.

The reciprocal polynomial of this is RG(z) = z8 + 2z6 − z5 + 2z4 − z3 + 2z2 + 1,

and this is in fact Kronecker-cyclotomic; we have RG(z) = Φ3(z)Φ4(z)Φ10(z). So G is

actually cyclotomic.

This example illustrates also that there are digraphs which are cyclotomic. However,

it may lead to a deceiving thought, in that we can just take a cyclotomic simple graph,

include charges on vertices or replace edges with signed arcs or edges, and still have a

resulting digraph which is cyclotomic. Unsurprisingly, this is not the case:

Example. Let G be the following:

0

1

−1

1

1

−1 .
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We then have:

AG =



0 0 0 0 1

1 0 1 0 0

0 1 0 −1 0

0 0 1 0 1

−1 0 0 1 0


.

This has reciprocal polynomial RG(z) = z10 + 5z8 + 11z6 − z5 + 11z4 + 5z2 + 1 and

M(G) = 5.24192758 · · ·.

Whilst we do not have a categorisation of all cyclotomic digraphs, we do know of a

particular family of digraphs which is cyclotomic, a special type of charged path.

For convenience, when referring to any sort of path, we may talk about a specific

vertex (the “first vertex”, “5-th vertex”, “last vertex” and so forth). If we do so, this will

be accompanied by a visual representation of a path, and the numbering will be the

canonical numbering that we would expect: vertices numbered left to right, 1 (first) to

n (last).

Proposition 3.3.1. Let PC1,C2
n be a path on n vertices, whereby the first and last vertices

are given some charge, C1 and C2 respectively, and all other vertices in the path are

neutral.

Then, M(PC1,C2
n ) = 1.

C1 C2(n− 2)

Figure 3.6: PC1,C2
n .

There are different ways to prove this, but the method we use is particularly relevant

for further methods that will be used throughout the thesis. We first need to make use

of the following, more general, result:
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Lemma 3.3.2. Let G be a graph on n ≥ 1 vertices with a distinguished vertex v. For

each m > 0, let GC
m be the graph obtained by attaching one endvertex of an m-vertex

path to the vertex v, where C represents a non-neutral charge on the other endvertex (so

GC
m has m more vertices than G).

Let RC
m(z) be the reciprocal polynomial of GC

m. Then, for m ≥ 2, we have:

(z + c)RC
m(z) = z2m−1B(z) + cB∗(z) , (3.2)

for some monic integer polynomial B(z) that depends on G and v, but not m.

G
v

(m− 1) C

Figure 3.7: A visualisation of GC
m.

Proof. We begin by noting that the uncharged case is covered by McKee and Smyth

[22]. More explicitly, if we let Rm(z) be the related reciprocal polynomial of Gm = G•
m,

we have that:

(z2 − 1)Rm(z) = z2mB(z)−B∗(z) , (3.3)

again, for some monic polynomial B(z) depending on G and v, but not m. It is further

noted that B(z) = R1(z)−R0(z).

For convenience, we refer to the adjacency matrices of GC
m and G as A and AG

respectively, and the corresponding characteristic polynomials as χC
m and χm respectively

It is noted by McKee and Smyth [22] that we have a recursive relation for the

characteristic polynomial of Gm (valid for m ≥ 2):

χm(x) = xχm−1(x)− χm−2(x) . (3.4)

Taking inspiration from this, we can label the graph GC
m appropriately so that the
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adjacency matrix is:

A =



c 1

1 0 1

1 0
. . .

. . . . . . 1

1 0 1

1 0 1

1
AG



.

Similarly to (3.4), one can find a relation for the characteristic polynomial of GC
m:

χC
m(x) = (x− c)χm−1(x)− χm−2(x). This is achieved by expanding det(xI −A) along

the first row, at which point it is straightforward to see. We can use (3.4) to simplify

this to:

χC
m(x) = χm(x)− cχm−1(x) . (3.5)

We then take the reciprocalisation of (3.5), giving us:

RC
m(z) = Rm(z)− czRm−1(z) . (3.6)

We then substitute in (3.3), which gives us:

RC
m(z) =

(
z2m

z2 − 1
B(z)− B∗(z)

z2 − 1

)
− cz

(
z2(m−1)

z2 − 1
B(z)− B∗(z)

z2 − 1

)

=
z2m−1(z − c)

z2 − 1
B(z)− 1− cz

z2 − 1
B∗(z) ,

where B(z) = R1(z)−R0(z).

To proceed from here, we first consider explicitly our 1 − cz term. Noting that
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c ∈ {±1}, we have that:

1− cz = c(
1

c
− z)

= c(c− z)

= −c(z − c) .

Hence, we have that:

RC
m(z) =

z2m−1(z − c)

z2 − 1
B(z) + c

z − c

z2 − 1
B∗(z)

⇒ z2 − 1

z − c
RC

m(z) = z2m−1B(z) + cB∗(z) .

Finally, we note that z2−1
z−c = z + c, again since c ∈ {±1}, which gives us (3.2), as

required.

This now gives us all we need to prove Proposition 3.3.1:

Proof of Proposition 3.3.1. Let A be the adjacency matrix of PC1,C2
n . Then:

A =



c1 1

1 0 1

1 0
. . .

. . . . . . 1

1 0 1

1 0 1

1 c2



,

where c1, c2 ∈ {±1} are the values representing the charges of C1, C2 respectively. We

can then apply Lemma 3.3.2 (by treating the single vertex with charge C2 as our graph

G that we are growing), meaning that the reciprocal polynomial of PC1,C2
n , say Rn(z),

is:

(z + c1)Rn(z) = z2n−1B(z) + c1B
∗(z) . (3.7)

We recall that B(z) = R1(z)−R0(z). By construction, we have that R0(z) and R1(z)
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are the reciprocal polynomials of χ0(x) = |x− c2| and χ1(x) =

∣∣∣∣∣∣∣
x −1

−1 x− c2

∣∣∣∣∣∣∣ respectively.

This gives us that B(z) = z4 − c2z
3 and B∗(z) = −c2z + 1. We can then substitute this

into (3.7), which gives us:

(z + c1)Rn(z) = z2n−1(z4 − c2z
3) + c1(−c2z + 1) .

We now expand this as appropriate and consider each case for c2 individually:

(z + c1)Rn(z) = z2n+2(z − c2) + c1(−c2z + 1) ,

=


(z2n+2 − c1)(z − 1), for c2 = +1 ,

(z2n+2 + c1)(z + 1), for c2 = −1 .

(3.8)

In each case represented in (3.8), we can then further consider individual cases for when

c1 = +1 and c1 = −1. In each of these four cases, we have that the resulting right hand

side of the formula in (3.8) are Kronecker-cyclotomic, meaning that M
(
RC

n (z)
)
= 1. As

this is the reciprocal polynomial of PC1,C2
n , this means M(PC1,C2

n ) = 1, as required.

We have exhibited a phenomenon here which we refer to as graph growing. Graph

growing is the process of taking a graph, and adding several vertices in succession,

resulting in a new, larger graph. Lemma 3.3.2 is a simple, yet key, tool for this: we

attach a path to a graph, ending with a possibly non-neutrally charged vertex.

We have seen how this is useful for proving results related explicitly to paths. However,

this will come to be an even more critical tool to use when trying to find small Mahler

measures. We will formalise this concept further in chapter 4.

We now turn our attention to the aforementioned results from McKee and Smyth.

They were able to give a classification for all cyclotomic charged signed graphs. That is

to say, objects which can have charged vertices, signed edges, but no signed arcs. So

these results do not relate to as broad a combinatorial object as we have studied here,

but they are still of use to us.



3.3. Digraphs and Mahler Measures: Key Examples 89

These results are best described in two separate theorems; one specifically related to

signed graphs (i.e. graphs with signed edges, but no charged vertices), and one more

broadly related to charged signed graphs:

Theorem 3.3.3 (McKee and Smyth, [23]). Every maximal connected cyclotomic signed

graph is equivalent to one of the following:

i. For some k ≥ 3, the 2k-vertex toral tessellation T2k (as seen in Figure C.1),

ii. The 14-vertex signed graph S14 (as seen in Figure C.2),

iii. The 16-vertex signed hypercube S16 (as seen in Figure C.3).

Further, every connected cyclotomic signed graph is contained in a maximal one, up to

equivalence.

Theorem 3.3.4 (McKee and Smyth, [23]). Every maximal connected cyclotomic charged

signed graph not included in Theorem 3.3.3 is equivalent to one of the following:

i. For some k ≥ 2, one of the 2k-vertex cylindrical tessellations C++
2k or C+−

2k (as

seen in Figure 3.8),

ii. One of the three sporadic digraphs S7, S8, S8′ (as seen in Figure C.4).

Further, every connected cyclotomic charged signed graph is contained in a maximal one,

up to equivalence.

Remark. The term equivalence can have many meanings. We explain the meaning of

equivalence here in more detail in Section 3.5, but for now, it suffices to know that there

is some notion of equivalence that allows us to capture all digraphs in this set up.
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+ +

+ +

· · · C++
2k

+ −

+ −

· · · C+−
2k

Figure 3.8: The charged signed graphs C++
2k and C+−

2k , with 2k vertices, for k ≥ 2.

So, if we wish to see if a charged signed graph is cyclotomic, it suffices to check if it

is a connected subgraph of one of the maximal examples listed in these theorems (or

“equivalent” to one). We will make use of this on several occasions.

We recall that the digraph we saw in Figure 3.5 was cyclotomic. However, as it

has signed arcs, it cannot be a subdigraph of any of the listed graphs here, and so

this classification would not have been of use to us here. A classification of cyclotomic

(charged signed) digraphs remains an open problem.

3.3.2 Digraphs with Small Mahler Measure

There are many approaches to searching for digraphs with small Mahler measures. Here,

we show some examples of digraphs with small Mahler measure, before outlining a naïve

approach that one may consider attempting for trying to find many digraphs with small

Mahler measures.

Example. Let G = P++
5 :

+ + ,
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and G1 be the digraph that results in changing the second vertex from a neutral charge

to a negative charge:

+ − + .

Then, M(G1) = λ.

This exhibits an interesting phenomenon. From Proposition 3.3.1, we know that

P++
5 is cyclotomic. So, by making a small change to a cyclotomic digraph (changing the

charge of a vertex), we have made a small change to the Mahler measure.

One may quickly ask an interesting question as a result of this: Do small changes to

digraphs make small changes to its Mahler measure? This is, naturally, a vague and

broad question. To try and increase precision, we could say that “small changes” to a

digraph involve just changing the charge of a single vertex, or the sign of a single arc.

Alternatively, we could allow a number of these small changes at the same time, so long

as this number is significantly smaller than the number of vertices of our digraph.

Heuristically, there is justification for asking this question and believing that we may

get some sort of positive result from this. Say we do just make a single change, either to

a charge of a vertex or a sign of an arc. In terms of the matrix, this is the equivalent

of mapping a single entry from {0,±1} to a new value in {0,±1}. Though there is not

much material to support this, we would wishfully expect that the resulting changes in

eigenvalues would not be too drastic, especially when searching for Mahler measures.

We also have further justification for believing this is a good avenue to explore. In

Section 1.3.1, we saw how we can attach Mahler measures to knots. Furthermore, we

noted a situation where we took a knot with associated Mahler measure 1, made a

small topological change to that knot, and the resulting knot had small Mahler measure.

Though the study of knots proved to be of minimal interest for finding small Mahler

measures, the fact that some parallels exist give us hope to at least explore this question

further.

Owing to the broad nature of this question, we can focus on a more specific case. In

particular, if we take some cyclotomic digraph and make small changes to it, will the

new digraph have a small Mahler measure? Unfortunately, the answer here is “no”:
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Example. Let G̃1 be the digraph that results in changing the middle (third) vertex of

G = P++
5 from a neutral charge to a negative charge:

+ − + .

We have that M(G̃1) = 1.40126836 · · ·.

It is, of course, disappointing that making small changes to cyclotomic digraphs

does not always lead to a small enough change in the Mahler measure to give us a new

digraph with a small Mahler measure. Yet, it is not wholly surprising either. But there

is still hope yet that making small changes to digraphs may be a useful method for

trying to find small Mahler measures.

Example 3.3.5. Let G = P+•
4 :

+ .

Let G1 be the digraph that results in changing the third vertex of G from a neutral

charge to a negative charge:

+ − .

Next, let G2 be the digraph that results in adding a fifth, neutral, vertex to G1, attached

to the fourth vertex of G1 by a positive edge, as well as having a negative arc from the

second and fifth vertex:

+ −
//

.

Finally, let G3 be the digraph that results in joining a sixth vertex, which is positively

charged, to the fifth vertex of G2 with a positive edge, as well as having a positive arc

from the first vertex to the sixth vertex:

+ − +

//

//

.



3.4. The Problems with Digraphs 93

Then, we have that: M(G) = 1, M(G1) = 1.28063815 · · · , M(G2) = 1.23039143 · · ·

and M(G3) = 1.26123096 · · · .

This again exhibits a way of taking some graph and growing it. However, this

is slightly different to our previous concept of graph growing. Here, we start with a

cyclotomic digraph, and make a small change, resulting in a new digraph with small

Mahler measure. Indeed, we usually are growing it, in that we are adding new vertices

in some instances. However, we can also see that we are, in some sense, increasing

the complexity: at each instance, we are adding more non-zero terms to the resulting

adjacency matrix.

This concept of taking a digraph and growing it requires a lot of care though. For

a digraph on n vertices, say we wish to grow the digraph into a new digraph on n+ 1

vertices by attaching the vertex to just one existing vertex. Then, there are 24n possible

ways to do this growing (since we have n vertices to choose from, 3 possible charges and

8 possible arc combinations to attach a new vertex). If we then include the possibility of

adding new arcs between existing vertices too, changing the charge of individual vertices

or attaching a new vertex to multiple new vertices, this increases the number of ways

to increase the complexity of the digraph even further. Doing this repeatedly becomes

increasingly complicated, and potentially time consuming, especially compared to our

original concept of graph growing.

We explore the concept of graph growing further in chapter 4, and see explicit results

in chapter 5.

3.4 The Problems with Digraphs

As has been mentioned, looking at the more general of these digraphs comes with costs:

many results which are true for simple graphs do not extend. Here, we look at such

results which do not extend from simple graphs to digraphs, and explain the subsequent

consequences. We refer to these as “Non-Propositions”: statements which we write as if

they were Propositions, but are false.

Firstly, we look at an attempted extension of Proposition 3.1.5:
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Non-Proposition 3.4.1. Let A be a real n × n matrix, with eigenvalues written as

µ1(A) ≥ µ2(A) ≥ · · · ≥ µn(A). Let B be a submatrix of A obtained by deleting the i-th

row and i-th column of A, with eigenvalues µ1(B) ≥ µ2(B) ≥ · · · ≥ µn−1(B). Then, the

eigenvalues of B interlace with those of A; that is to say:

µ1(A) ≥ µ1(B) ≥ µ2(A) ≥ · · · ≥ µn−1(B) ≥ µn(A) .

As the adjacency matrices of our digraphs are, in general, not symmetric, we need

to lose that condition from Proposition 3.1.5. However, as this is the only condition

we drop, and we make no subsequent changes to our statement, it should come as no

surprise that such a result is not true. As a result, it is not the case that if we have a

digraph G and an induced subdigraph H, then M(G) ≥M(H).

A further consequence here relates to Example 3.3.5. There, we were taking a digraph

and growing it by adding a single vertex. If we were to do this with a simple graph,

we know that the Mahler measure of the new simple graph will be at least the Mahler

measure of the original one. This gives our growing of simple graphs a natural end point:

we either grow them to the point the resulting Mahler measures are too large to be of

interest to us, or they possibly end up always being the same.

With digraphs, as we have no relations between that of the Mahler measure of a

grown digraph and that of the original, we have no natural end point. Indeed, we see

this occur in Example 3.3.5. We started with a cyclotomic digraph, and then as we

grew the digraph by adding (or changing) vertices, as well as additional arcs, the Mahler

measures of the resulting digraphs oscillated, whilst remaining small. Whilst this does

mean that there is greater scope for finding more digraphs with small Mahler measures,

we are inheriting a volatile environment of which we have little understanding.

With these in mind, we can now make another attempt to extend Proposition 3.1.5:

Non-Proposition 3.4.2. Let A be a real n × n matrix, with eigenvalues written as

µ1(A) ≥ µ2(A) ≥ · · · ≥ µn(A). Let B be a submatrix of A obtained by deleting the

i-th row and i-th column of A, so that B is symmetric. Write the eigenvalues of B as

µ1(B) ≥ µ2(B) ≥ · · · ≥ µn−1(B). Then, the eigenvalues of B interlace with those of A;
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that is to say:

µ1(A) ≥ µ1(B) ≥ µ2(A) ≥ · · · ≥ µn−1(B) ≥ µn(A) .

It is clear why it is desirable to have such a result. In terms of digraphs, it is claiming

that if we have a digraph G which is “close” to being a charged signed graph (i.e. a

charged graph which only has signed edges), then the resulting eigenvalues interlace. By

“close”, in the simplest sense, we can mean that only one single signed arc exists, and so

we can remove one of the vertices it is incident with to arrive at a charged signed graph.

Compared to Non-Proposition 3.4.1, it is slightly less obvious whether this statement

is true or false. However, we have already seen a counter-example to disprove this:

Example 3.4.3. Let A be the adjacency matrix of G2 in Example 3.3.5, and B by the

matrix obtained by deleting the fifth row and column of A. This means that B is in fact

the adjacency matrix of G1 from Example 3.3.5:

A =



1 1 0 0 0

1 0 1 0 −1

0 1 −1 1 0

0 0 1 0 1

0 0 0 1 0


, B =



1 1 0 0

1 0 1 0

0 1 −1 1

0 0 1 0


.

We have already seen that M(G2) < M(G1). However, let us look at the eigenvalues

explicitly to verify this beyond doubt:

Eigenvalue A B

µ1( ) 1.69649 . . . 1.76401 . . .

µ2( ) 1.27683 . . . 0.69382 . . .

µ3( ) 0.19993 . . . −0.39633 . . .

µ4( ) −1.13012 . . . −2.06149 . . .

µ5( ) −2.04314 . . .

We see that, in particular, µ4(B) ̸≥ µ5(A), and so interlacing fails.
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And so this is our main problem with digraphs, especially when trying to find small

Mahler measures. With no interlacing, and no plausible replacement, growing digraphs

becomes more intricate. Let us make a final statement related to simple graphs:

Proposition 3.4.4. Let G be a simple graph on n vertices, and G1 be the simple graph

obtained by attaching some new (n+ 1)-th vertex to at least one specified vertex in G.

Then, M(G1) ≥M(G).

Proof. The proof is effectively the same as that of Proposition 3.1.9.

Indeed, this is just one of the reasons why searching over and growing simple graphs

was so desirable in the first place. However, because – as we have seen – there is an

oscillating nature of Mahler measures for digraphs which have been grown, there is

nothing we can say in this setting. We capture this in one final Non-Proposition:

Non-Proposition 3.4.5. Let G be a digraph on n vertices, and G1 be the digraph

obtained by attaching some new (n+ 1)-th vertex to at least one specified vertex in G.

Then, M(G1) ≥M(G).

We will see in chapters 4 and 5 how we tackle this issue. In fact, we see in chapter 5

that this oscillation of Mahler measures is a particularly interesting feature which we

can use to expand our knowledge.

One may wonder if the problems we have seen with digraphs extend elsewhere. We

have seen that interlacing fails for our digraphs and maybe it was too optimistic to think

that such a tool would hold beyond symmetric, {0, 1}-entry matrices (which translate to

simple graphs). However, the class of matrices for which interlacing does hold is indeed

broader. In fact, interlacing holds for all complex Hermitian matrices: matrices A of the

form A = AT , and so in particular any real symmetric matrix.

Another known class of matrices for which interlacing does hold is symmetrizable

matrices:

Definition 3.4.6. A real n×n matrix A is symmetrizable if there is some real diagonal

matrix D, with strictly positive entries, such that D−1AD is symmetric.
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Discussion on symmetrizable matrices, including a justification for the fact that

interlacing does hold for these matrices, can be found in, for example, McKee and Smyth

[25].

3.5 Equal and Opposite: Switching and Equivalence

So far, we have acknowledged that, whilst simple graphs have many powerful tools

associated to them, they are particularly limited with regards to finding small Mahler

measures. In turn, we overcome these limitations by introducing digraphs. However,

whilst we have seen they certainly can cast a wider net for finding small Mahler measures,

we have only focused on the difficulties we face when using them.

Here, we explore some straightforward, but useful, results which relate to digraphs

more specifically. Some of these results are included out of a sense of interest and for

completeness, whilst others will prove more useful later.

3.5.1 Switching, Degree and Negativity

Switching

Definition 3.5.1. Let G be a digraph and i a distinguished vertex of G. A sign switch

at the vertex i changes the signs of all arcs going in and out of the vertex i, whilst not

changing the charge of the vertex i.

Definition 3.5.2. We say two digraphs G and H are switch equivalent if there exists

a series of sign switches taking G to H.

Example 3.5.3. The following digraphs G and H are switch equivalent. This can be

achieved, for example, by performing sign switches at both of the neutral vertices.

+

−

1 0

−1

1

G

+

−

−1 0

1

−1

H .
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Proposition 3.5.4. A sign switch at any vertex preserves Mahler measure.

Proof. Let G be a digraph and say we are performing a sign switch at a distinguished

vertex labelled i. If we consider the adjacency matrix of G, a sign switch swaps the sign

of all entries in the i-th row and column (meaning the (i, i)-entry is unchanged). This

does not affect the characteristic polynomial, χG.

As such, the reciprocal polynomial RG also remains the same, and so M(G) will be

preserved.

Corollary 3.5.4.1. Let G and H be switch equivalent digraphs. Then, M(G) =M(H).

If we consider the matrix theory behind sign switching, we will note that any series

of sign switches has the effect of replacing the adjacency matrix A by DAD = DAD−1,

where D is a diagonal matrix with ±1 entries. In fact, the location of the −1 entries of

D flag the vertices at which the sign switches are performed. With this in mind, we now

turn to the following Theorem which is important in the theory of sign switching.

Theorem 3.5.5. Let G and H be connected digraphs on n vertices, with corresponding

adjacency matrices A = AG and B = AH respectively, such that:

• aii = bii for each i,

• aij = |bij | for 1 ≤ i ≤ n, 1 ≤ j ≤ n, i ̸= j.

Then, χA = χB if and only if there exists a diagonal matrix D = diag(d1, · · · , dn), with

each di ∈ {±1}, such that A = DBD−1.

A proof of this is contained inside McKee and Smyth [25].

Theorem 3.5.5 gives us a way of testing if, given two digraphs, they are switch

equivalent. For us, this is useful as it allows us to see if two digraphs, which may look

rather different, share the same Mahler measure.

To explain the usefulness in short, our aim is to be taking different digraphs and

growing them to see if the resulting new digraphs have small Mahler measures. If, given

two digraphs, we find they are switch equivalent, then it is perhaps worth not growing

both digraphs, as it is possible they will admit the same results if grown in the same
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way. This is particularly prevalent when we are making careful selections for digraphs to

grow, and vertices to grow them from.

There is a subtlety around the notion of switch equivalence we have not yet addressed.

We need to take into account our labelling of vertices, and how we can permute these.

When we consider, for example, the adjacency matrices of digraphs, we have made a

choice of the labelling of the vertices, and this choice can be changed and permuted

in any way we see fit (since it does not affect other objects of interest, such as the

characteristic polynomial). This leads to a concern, since when we consider switch

equivalence, we specifically work with the adjacency matrices of digraphs.

As such, we introduce the following notion to help combat this concern:

Definition 3.5.6. We say two digraphs G and H are equal if there is a bijection between

V (G) and V (H) which preserves the charges of the vertices and the signs of arcs.

A consequence of this means that if two digraphs G and H are equal, and have

adjacency matrices AG and AH respectively, then AG = SAHS = SAHS
−1, where S is

some permutation matrix. This precisely addresses our concern, since this would reflect

a re-labelling of our vertices. So we do not need to be concerned with the labelling of

our vertices.

Before moving on from switching, we note an important result related to paths.

Proposition 3.5.7. Let G be a path on n vertices, such that each vertex vi has some

charge Ci, and each edge (vi, vi+1) has a sign ei. Let H be a path on n vertices, such

that each vertex wi has charge Ci (so it is the same charge as the corresponding vertex

in G), and each edge (vi, vi+1) is positively signed.

Then, G and H are switch equivalent.

Proof. Say that the first negatively signed edge is ek. We can perform a sign switch at

the vertex vk+1. This means that ek is now a positively signed edge. We then repeat

this process, if any negatively signed edges remain, knowing that the next negatively

signed edge will be some edge et, for some t > k. Of course, if no negatively signed

edges remain, we are done.
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We can repeatedly perform this process to achieve our result. We note, in particular,

if we are in a situation where the ‘first’ negative edge is en−1 (that is, the last edge), we

perform a sign switch at the vertex vn. As en−1 is the only edge formed by vn, this is

the only edge affected by a sign switch. This would mean all edges are positively signed,

as required.

For a very simple visualisation of how a smart choice of vertices to switch at takes

us to a case where all edges are positively signed, if we have a totally negative path on

n neutral vertices, then switching at every second vertex will transform the path to a

totally positive one. The following demonstrates this for a path on 6 and a path on 7

vertices, and it is easy to see how this extrapolates generally depending on when n is

even and odd:

↑↓ ↑↓ ↑↓

y

Figure 3.9: Switching along totally negative paths.

Degree

Now, we look to extend the notion of the degree of a vertex, which we are familiar with

from simple graphs.

Definition 3.5.8. Let G be a digraph, and v, w be vertices of G. We say v is incident

with w if there exists an arc from v to w or w to v. Furthermore, if v has a non-neutral

charge, we say that v is incident with itself.

Remark. Previously, we have also used the word incident to mean any arc or edge

which is connected to a vertex. Moving forward, when we use the word incident, it is
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clear from context whether we are referring to vertices being incident, or edges being

incident with a vertex.

Definition 3.5.9. The degree of a vertex v in a digraph is equal to the number of

vertices incident with v.

We note that this is a natural generalisation of the degree of a vertex in a simple

graph. Furthermore, since a non-neutrally charged vertex is incident with itself, a

non-neutral charge contributes 1 to the degree of the vertex.

In terms of the adjacency matrix, say A, the degree of the i-th vertex of a digraph is

equal to the number of non-zero entries in the i-th row of A. This is also equal to the

(i, i)-entry of A2.

Proposition 3.5.10. Let G be a cyclotomic charged signed graph. Then, the degree of

any vertex of G is at most 4.

Proof. Let A = AG be the adjacency matrix of G, and let di be the (i, i)-entry of A2

(and so the degree of the i-th vertex).

By interlacing, A2 has an eigenvalue µ ≥ di, and so A has an eigenvalue µ1 such

that |µ1| ≥
√
di. As A is cyclotomic, all eigenvalues lie in [−2, 2] (by Lemma 3.1.11) and

so 2 ≥ |µ1|. Therefore, di ≤ 4.

A natural question to ask from here is if we can extend the result for cyclotomic

(charged signed) digraphs:

Non-Proposition 3.5.11. Let G be a cyclotomic digraph. Then, the degree of any

vertex of G is at most some d, for some d ∈ Z.

However, for any given d, we can always find a cyclotomic digraph with a vertex

that has degree larger than d, as can be seen by Example 3.5.12 below. That is to say,

there is no upper bound for the maximum degree of any vertex of a cyclotomic digraph,

at least, in the same way as Proposition 3.5.10. In fact, the only general claim we can

make regarding cyclotomic digraphs and degree is that the degree of any vertex cannot

exceed the number of vertices of the digraph. However, since the degree of a vertex

cannot exceed the number vertices by definition, this is not a useful claim to make.
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Example 3.5.12. Let G be following star-like digraph on n+ 1 vertices:

+ //oo

��

.
.

.

.
.

.

.

This has adjacency matrix:

A =



1 1 1 · · · 1

0 0 0 · · · 0

...
...

...
. . .

...

0 0 0 · · · 0


.

From here, we note that χG(x) = xn(x−1), and so RG(z) = (z2−z+1)(z2 + 1)
n. Thus,

M(G) = 1. We further note that the charged vertex here has degree n+ 1.

Of course, that is not to say there is nothing we could say to link vertex degree and

cyclotomic digraphs, but there is little hope of a broad statement akin to Proposition

3.5.10.

Negativity

We finally turn our attention to what it means to take the negative of a digraph:

Definition 3.5.13. Let G be a digraph and A = AG be its adjacency matrix, with entries

(aij).

We say that the negative of the digraph G, denoted −G, is the digraph whose

corresponding adjacency matrix has entries (−aij).

Example 3.5.14. Here we look at the negative of a cyclotomic digraph we saw Example

3.2.2:

−

+

1

−1

1 0

G

+

−

−1

1

−1 0

−G .
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We have that:

A−G =



0 1 0 −1

1 −1 0 0

0 −1 0 1

−1 0 −1 1


,

and in fact AG = −A−G.

We have characteristic polynomial χ−G(x) = x4 − 2x2 + x and reciprocal polynomial

R−G(z) = z8 + 2z6 + z5 + 2z4 + z3 + 2z2 + 1. This reciprocal polynomial is also

Kronecker-cyclotomic: R−G(z) = Φ4(z)Φ5(z)Φ6(z), but we note this is slightly different

to RG(z). Another way of writing this, however, is that R−G(z) = RG(−z).

Proposition 3.5.15. Let G be any digraph on n ≥ 1 vertices. We have that M(G) =

M(−G).

Proof. Let A be the adjacency matrix of G and B be the adjacency matrix of −G. So,

we have that B = −A.

The eigenvalues of B are precisely the negatives of those of A. Indeed, this means

that each corresponding eigenvalue will have the same multiplicity as well, since if

Av = µv for some eigenvalue µ, then Bv = −Av = −µv.

Therefore, eigenvalues of A in [−2, 2] correspond to eigenvalues of B in [−2, 2], and

thus do not contribute to the Mahler measure (as we have seen in Lemma 3.1.8). Any

eigenvalue of A, say µ, greater than 2 contributes a factor of |µ+
√

µ2−4|
2 to the Mahler

measure of A (again, following from Lemma 3.1.8). This factor is equal to |−µ−
√

(−µ)2−4|
2 ,

which contributes to the Mahler measure of B, since −µ is an eigenvalue of B.

As such, the contributions to the Mahler measure are always equal, meaning M(A) =

M(B). Therefore, M(G) =M(−G).

3.5.2 Equivalent Digraphs

Finally, we return to a remark made after Theorems 3.3.3 and 3.3.4, and formalise the

notion of equivalence between two digraphs.
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Definition 3.5.16. Let G and H be digraphs on the same number of vertices. We say

that G and H are equivalent if one of the following is true:

• G and H are switch equivalent,

• G and −H are switch equivalent;

• G is switch equivalent to a digraph which is equal to H or −H.

Returning to the classification theorems of cyclotomic charged signed graphs, this

means that a cyclotomic charged signed graph may be contained inside one of the

mentioned maximal examples, or it may be equivalent to one which is contained inside

one of these maximal examples. This is the meaning of “up to equivalence” in these

statements. As such, we do not see all cyclotomic charged signed graph inside the

maximal examples, but we do see all up to equivalence.

We recall that prior to proving Proposition 3.3.1 (which states that the path with

charges at either end, PC1,C2
n , is cyclotomic), we mentioned that there were many ways

to prove it. The method we used demonstrated the importance of graph growing, which

is an important part of this thesis. With our knowledge of these classification theorems

and equivalence, we can now give an alternative, simpler, proof:

Alternative Proof of Proposition 3.3.1. We look to use Theorem 3.3.4 and show that

PC1,C2
n is either contained within one of the maximal examples, or equivalent to one

contained within one of the maximal examples, for any combination of charges (C1, C2).

Firstly, we note that P++
n is equivalent to P−−

n , and P+•
n is equivalent to P−•

n . To

see this, we can take the negative of one of the digraphs, to change the charges of the

vertices, and then apply Proposition 3.5.7 to switch the signs of edges back. As such, we

only need to verify that P++
n , P+−

n , P+•
n and P ••

n = Pn are contained with the maximal

examples.

This is straightforward to see: P++
n and P+•

n are contained with C++
2k . Meanwhile,

P+−
n is contained within C+−

2k . Finally, Pn is in fact contained within both of these

cylindrical tessellations. Hence, PC1,C2
n is cyclotomic.
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We round off this Section by showing a certain digraph is cyclotomic, making use

both of Theorem 3.3.4 (one of our classification theorems for charged signed graphs) and

this notion of equivalence.

Proposition 3.5.17. The “snake tongue” digraph, S, is cyclotomic.

t ∗

Figure 3.10: The digraph S.

Remark. We note that we have referred to S as a (charged signed) digraph. However,

more particularly, it is a charged signed graph, which means we will be allowed to use

Theorem 3.3.4. We refer to it as a digraph since we will use it within that context later

on. Of course, charged signed graphs are a special case of our digraphs, so this is just a

technicality.

Proof. We recall the digraph C+−
2k , one of the maximal connected cyclotomic charged

signed graphs from Theorem 3.3.4, seen in Figure 3.8:

+ −

+ −

· · ·

.

When the charged vertex of S is neutrally or positively charged, we see that it is

an induced subgraph of C+−
2k , and so by Theorem 3.3.4, S is cyclotomic. We see that

the removal of all vertices on the lower layer, except the “last” uncharged vertex, as well

as the negatively charged vertices and, in the case when S has only neutrally charged

vertices, the upper positively charged vertex, gives us the induced subgraphs in these

instances. This can be seen below:
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+ · · ·

.

· · ·

.

Now consider the case where the charged vertex of S is negatively charged. In this

case, S cannot be an induced subgraph of C+−
2k : we would always be left with a negative

edge regardless of which vertices we keep and which we remove. So in this case, we need

to find an induced subgraph of C+−
2k which is (switch) equivalent to the negative of this

digraph. We see that the negative of S with a negatively charged vertex at the end is:

+ · · ·

.

Now, by switching at the vertex which is joined to three vertices, and then switching in a

similar fashion to that in the proof of Proposition 3.5.7, we arrive at the digraph S with

a positively charged vertex at the end. We already know this is an induced subgraph of

C+−
2k .

So, up to equivalence, S is contained in a maximal connected cyclotomic charged

signed graph, regardless of the charge of the vertex. Thus, S is also cyclotomic.

The snake tongue S will be a useful addition to growing digraphs, as we will see in

chapter 4.



Chapter 4

Growing Digraphs and More

In this chapter, we explore in greater detail fruitful ways to grow digraphs. In chapter 3,

we saw two different ways to grow digraphs: attaching a path (with a possible non-neutral

charge at the end) to a specified vertex, or by attaching smart choices of graph objects

to a digraph. As noted, the latter of these choices is, on the surface, more complex. As

such, we look in more detail at the former of these options, as well as related methods.

We will see that there is much depth to this idea, and this will be of significant use to

us when finding small Mahler measures from digraphs.

We have two key goals in this chapter. The first is to find explicit formulas related

to certain grown digraphs. This will help us to find small Mahler measures in chapter 5,

as well as being of use to our second goal, which is to investigate the general shape of

the reciprocal polynomial of a digraph which has been grown using our outlined method.

Parts of Sections 4.1 and 4.3 have appeared in Coyston and McKee [9].

4.1 Formalising Definitions and Concepts

We begin by formalizing some concepts seen in chapter 3, and expanding upon these

notions.

Definition 4.1.1. A pendant path in a graph G is a sequence of neutral vertices

v1, · · · , vt whereby:

• There are positive edges between vi and vi+1 (1 ≤ i < t),
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• If w is any vertex of G that is not one of the vi, then there are no arcs in either

direction between w and any of v1, · · · , vt−1, although arcs between w and vt are

allowed.

G vt vt−1 vt−2 v2 v1
· · ·

Figure 4.1: A visualisation of a graph G with a highlighted pendant path.

We note that pendant paths can exist in general graphs, but our focus will be for

digraphs in particular.

We can extend this definition to include versions of charged paths:

Definition 4.1.2. A charged pendant path in a digraph G is a sequence of vertices

v1, · · · , vt whereby:

• The vertex v1 has a non-neutral charge,

• There are positive edges between vi and vi+1 (1 ≤ i < t),

• If w is any vertex of G that is not one of the vi, then there are no arcs in either

direction between w and any of v1, · · · , vt−1, although arcs between w and vt are

allowed.

If the charge is positive, we refer to this as a positively charged pendant path,

whilst if it is negative, we refer to it as a negatively charged pendant path.

For convenience, from this point, we say pendant path to mean either a charged or

uncharged pendant path. If we know exactly what type of pendant path we are working

with, we will mention this explicitly. If we have an unspecified charge, say represented

by C, at the end of our pendant path, we will refer to this as a C-charged pendant path.

Our definitions here make reference to pendant paths existing within a specified

digraph. However, we can also use pendant paths to grow digraphs. In fact, we have
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already seen, in Lemma 3.3.2, an example of us attaching a C-charged pendant path to

a specified digraph.

A further way of growing pendant paths is to attach more than one pendant path.

Indeed, much like how McKee and Smyth [22] have a result for attaching an uncharged

pendant path to a graph G, they also have a more general result for attaching multiple

uncharged pendant paths:

Lemma 4.1.3. Let G be a graph on n ≥ 1 vertices with a list of k (not necessarily

distinct) distinguished vertices v1, · · · , vk. Let Gm1,···,mk
be the graph obtained by attaching

one endvertex of a new mi-vertex uncharged pendant path to vertex vi (so Gm1,···,mk
has

m1 + · · ·+mk more vertices than G).

Let Rm1,···,mk
be the reciprocal polynomial of Gm1,···,mk

. Then, if mi ≥ 2 for each i,

we have:

(z2 − 1)
k
Rm1,···,mk

(z) =
∑

(ϵ1,···,ϵk)∈{0,1}

z2
∑

ϵimiBϵ1,···,ϵk(z) , (4.1)

for some monic integer polynomials Bϵ1,···,ϵk(z) that depends on G and (v1, · · · , vk), but

not m1, · · · ,mk.

G v1vk

vi

(m1 − 1)(mk − 1)

(mi − 1) . .
.

.

..
.

.

Figure 4.2: A visualisation of Gm1,···,mk
.

The concept of attaching pendant paths is a natural way to think of growing a graph;

it is easy to visualise how the graph is growing. However, the heart of growing a graph

is that we are adding vertices to the graph. As such, another way to achieve this is to

subdivide an edge between two vertices:

Definition 4.1.4. Let G be a digraph and v, w be distinct neutral vertices of G joined by

a (signed) edge e. A subdivision (of size t ≥ 1) of the edge e introduces t new neutral
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vertices between v and w, say u1, · · · , ut, such that the edges (v, u1), (ut, w) and (ui, ui+1)

(for 1 ≤ i ≤ t− 1) are of the same sign as e.

t

· · ·

v w

v w

v wu1 ut

Original edge

Subdivision

Explicit look

Figure 4.3: A subdivision of a positive edge.

Subdividing an edge can be thought of as growing an “internal path” within our

digraph. Furthermore, we notice that if we subdivide an edge where one of the vertices

is a leaf (a vertex that only has one adjacent vertex), this is effectively the same as

attaching a neutral pendant path. So, in some sense, a neutral pendant path is a special

case of a subdivided edge.

In the context of growing digraphs for finding small Mahler measures, pendant paths

and subdivisions are of particular interest because they have trivial Mahler measure in

their own right: they are just (possibly charged) paths. If we go back to our heuristic

thought process from chapter 3, we have the hopeful idea that if we take a cyclotomic

digraph and make a small change to it, we may make a small change to the Mahler

measure as a result. In essence, we have a digraph that is “almost cyclotomic”, and so

we hope that the Mahler measure is “almost 1”, or rather, small.

Attaching pendant paths and subdividing edges almost reverses this thought process.

If we take a suitable digraph, and attach a large enough cyclotomic digraph, we are left

with a new digraph which itself is almost cyclotomic. Again, this means that we can

hope that the resulting Mahler measure is small. This, of course, has a certain level

of dependence on the original digraph we choose. If we choose a digraph which has a

large Mahler measure, and itself is very far away from being cyclotomic, even attaching
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large cyclotomic digraphs may not be enough to create a new digraph which is almost

cyclotomic.

We will explore which types of digraphs are suitable for this idea later, in Section

5.1. Our focus for now remains on confirming that the idea of growing digraphs for

finding small Mahler measures remains possible (i.e. if these digraphs have reciprocal

polynomials which could have small Mahler measure) and feasible (i.e. if we can find

ways to explicitly compute Mahler measures in a reasonable time).

4.2 Twice as Nice: Two Pendant Paths

We used Lemma 3.3.2 to find an explicit formula – namely (3.2) – for the reciprocal

polynomial of a digraph which had a C-charged pendant path attached to a specified

vertex. This was an extension of a result covered by McKee and Smyth [22].

Furthermore, Lemma 4.1.3 is also a result from McKee and Smyth. So, it is natural

to ask if we can extend this result to also cover charged pendant paths. In short, the

answer is yes, and it is not hard to conceive how. The problem that arises, however, is

when we want to find explicit formulas in each case. For k pendant paths, we have 3k

possible combinations of pendant paths we could attach to specified vertices v1, · · · , vk.

As such, finding and stating all of these formulas becomes increasingly intricate and

somewhat convoluted, albeit not extremely difficult, as k increases.

As such, we choose to find all explicit formulas for the situations where we add

two pendant paths to a digraph. Not only does this mean our calculations will be

manageable, we will see in chapter 5 that this is all that is necessary for the experiments

we wish to run.

Before moving to the cases of charged pendant paths, let us re-state Lemma 4.1.3

for the case k = 2, with a slight extension and a refocused result:

Lemma 4.2.1. Let G be a graph on n ≥ 1 vertices and (v1, v2) be a list of two (not

necessarily distinct) vertices of G. Let Gm1,m2 be the graph obtained by attaching one

endvertex of a new mi-vertex pendant path to the vertex vi, for i = 1, 2 (so, Gm1,m2 will

have m1 +m2 more vertices than G).
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Let Rm1,m2 be the reciprocal polynomial of Gm1,m2. Then, if both mi ≥ 0, we have:

(z2 − 1)
2
Rm1,m2 = (z2m1 − 1)(z2m2 − 1)R1,1 − (z2m1 − 1)(z2m2 − z2)R1,0

− (z2m1 − z2)(z2m2 − 1)R0,1 + (z2m1 − z2)(z2m2 − z2)R0,0 .

(4.2)

Firstly, we note the difference in the presentation of the formulas between (4.1) and

(4.2). This is because the former equation is given in a more succinct format, and in the

case k = 2, we have that:

B1,1(z) = R1,1(z)− R1,0(z)− R0,1(z) + R0,0(z) ,

B1,0(z) = R1,1(z)− z2R1,0(z)− R0,1(z) + z2R0,0(z) ,

B0,1(z) = R1,1(z)− R1,0(z)− z2R0,1(z) + z2R0,0(z) ,

B0,0(z) = R1,1(z)− z2R1,0(z)− z2R0,1(z) + z4R0,0(z) .

(4.3)

Secondly, we note that we are extending this result for mi ≥ 0, whilst the version

from McKee and Smyth is stated only for mi ≥ 2.

Proof of Lemma 4.2.1. As stated, this has already been shown when mi ≥ 2. In fact,

the method presented by McKee and Smyth proves this for mi ≥ 1.

To show that (4.2) is valid for mi ≥ 0, we simply need to verify for two cases: when

m1 = m2 = 0, and when mi > 0 and mj = 0, for i, j ∈ {1, 2} , i ̸= j (the case mi = 0

and mj > 0 would follow by a symmetric argument).

If we let m1 = m2 = 0 in (4.2), it is easy to see the result holds.

If we let m1 = 0, and write Ri,j for Ri,j(z), then we get:

(z2 − 1)
2
R0,m2 = (z0 − 1)(z2m2 − 1)R1,1 − (z0 − 1)(z2m2 − z2)R1,0

− (z0 − z2)(z2m2 − 1)R0,1 + (z0 − z2)(z2m2 − z2)R0,0 ,

= − (1− z2)(z2m2 − 1)R0,1 + (1− z2)(z2m2 − z2)R0,0 .
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By dividing through by (z2 − 1) and suitably expanding and rearranging, we get:

(z2 − 1)R0,m2 = z2m2R0,1 −R0,1 − z2m2R0,0 + z2R0,0

= z2m2(R0,1 −R0,0)− (R0,1 − z2R0,0) .

We note that this situation is precisely the same as adding a single uncharged pendant

path to some vertex. This is described in McKee and Smyth; we have already seen this

in (3.3). So, following the above notation, the result can be written as:

(z2 − 1)R0,m2 = z2m2(R0,1 −R0,0)− (R0,1 −R0,0)
∗ .

As such, to verify (4.2) is valid for when one mi = 0, it is sufficient for us to verify

that:

(R0,1 − z2R0,0) = (R0,1 −R0,0)
∗ . (4.4)

For convenience, we will now let R0,1 = R1 and R0,0 = R0. We also note that, by

definition, deg(R1) = deg(R0) + 2. This means that, for ai, bi ∈ Z, we can write:

R1(z) = anz
n + an−1z

n−1 + an−2z
n−2 + · · ·+ a1z + a0

−R0(z) = bn−2z
n−2 + · · ·+ b1z + b0 ,

R(z) = anz
n + an−1z

n−1 + (an−2 − bn−2)z
n−2 + · · ·+ (a1 − b1)z + (a0 − b0) ,

⇒ R∗(z) = (a0 − b0)z
n + (a1 + b1)z

n−1 + · · ·+ (an−2 − bn−2)z
2 + an−1z + an .

This gives us the right hand side of (4.4) (where we have written R(z) = R1(z)−R0(z)

for convenience).

For the left hand side, we set S(z) = (R1 − z2R0)(z), giving us:

S(z) = (an − bn−2)z
n + (an−1 − bn−3)z

n−1 + · · ·+ (a2 − b0)z
2 + a1z + a0 .

This gives us the left hand side of (4.4).

Since R1(z) and R0(z) are reciprocal, we know that ai = an−i and bj = b(n−2)−j . If
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we write S(z) =
∑n

i=1 siz
i and R∗(z) =

∑n
i=1 r

∗
i z

i, we get that:

si =


ai − bi−2, for i ≥ 2 ,

ai, for i < 2 .

=


an−i − bn−i, for i ≥ 2 ,

an−i, for i < 2 .

= r∗i ,

which verifies the equality of (4.4), and hence completes the proof.

This will now serve as a strong foundation for us to find explicit formulas for the

shape of the reciprocal polynomial of a digraph grown with combinations of (charged or

uncharged) pendant paths. We will look at these in a case by case basis, as this helps

add clarity to the results, before stating a final result in larger generality.

4.2.1 Charging One Pendant

We first look at the shape of the reciprocal polynomial of a digraph that has been grown

by attaching a negatively charged pendant path, and an uncharged pendant path. We

will show the proof and required manipulation of equations in great detail in this instance.

What should be noted, however, is that the proof itself is not particularly difficult: it

simply revolves around manipulating equations at the correct time. As such, we will

note that the proof attaching one positively charged pendant path and one uncharged

pendant path is effectively the same, and as such we will not look at that in as much

detail.

Lemma 4.2.2. Let G be a digraph on n ≥ 1 vertices and (v1, v2) be a list of two (not

necessarily distinct) vertices of G. Let G•−
m1,m2

be the digraph obtained by attaching one

endvertex of a new neutrally charged pendant path with m1 vertices to the vertex v1, and

attaching one endvertex of a new negatively charged pendant path with m2 vertices to the

vertex v2 (so, G•−
m1,m2

will have m1 +m2 more vertices than G).

Let R•−
m1,m2

be the reciprocal polynomial of G•−
m1,m2

. Then, if both mi ≥ 1, we have:
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(z − 1)2(z + 1)R•−
m1,m2

(z) =
∑

ϵ1,ϵ2∈{0,1}

c•−(ϵ1, ϵ2)z
2(
∑

ϵimi)−ϵ2Bϵ1,ϵ2(z) , (4.5)

for some integer polynomials Bϵ1,ϵ2(z), as defined in (4.3), that depend on G and (v1, v2),

but not on m1,m2, and where c•− is the function:

c•−(ϵ1, ϵ2) =



1 , if ϵ1 = ϵ2 = 1 ,

−1 , if ϵ1 = 1, ϵ2 = 0 ,

−1 , if ϵ1 = 0, ϵ2 = 1 ,

1 , if ϵ1 = ϵ2 = 0 .

Proof. Let H = G•
m1

= Gm1 ; the digraph G with a neutrally charged pendant path on

length m1 attached to the specified vertex v1. Then, we can think of the digraph G•−
m1,m2

as H−
m2

; the digraph H with a negatively charged pendant path on length m2 attached

to the specified vertex v2.

We can then apply (3.6), as found in Lemma 3.3.2, to give us:

R•−
m1,m2

(z) = Rm1,m2(z) + zRm1,m2−1(z) .

We can now multiply through by (z2 − 1)
2 to get:

(z2 − 1)
2
R•−

m1,m2
(z) = (z2 − 1)

2
Rm1,m2(z) + z(z2 − 1)

2
Rm1,m2−1(z) ,

and then note the we can use (4.2) to expand the right hand side.

Writing Ri,j for Ri,j(z) and R•−
i,j for R•−

i,j (z), this leads to:

(z2 − 1)
2
R•−

m1,m2
=
(
(z2m1 − 1)(z2m2 − 1)R1,1 − (z2m1 − 1)(z2m2 − z2)R1,0

− (z2m1 − z2)(z2m2 − 1)R0,1 + (z2m1 − z2)(z2m2 − z2)R0,0

)
+ z

(
(z2m1 − 1)(z2(m2−1) − 1)R1,1 − (z2m1 − 1)(z2(m2−1) − z2)R1,0

− (z2m1 − z2)(z2(m2−1) − 1)R0,1 + (z2m1 − z2)(z2(m2−1) − z2)R0,0

)
.
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Appropriate expansions then give us:

(z2 − 1)
2
R•−

m1,m2
= (z2m1 − 1)(z2m2 − 1)R1,1 − (z2m1 − 1)(z2m2 − z2)R1,0

− (z2m1 − z2)(z2m2 − 1)R0,1 + (z2m1 − z2)(z2m2 − z2)R0,0

+ (z2m1 − 1)(z2m2−1 − z)R1,1 − (z2m1 − 1)(z2m2−1 − z3)R1,0

− (z2m1 − z2)(z2m2−1 − z)R0,1 + (z2m1 − z2)(z2m2−1 − z3)R0,0 .

If we now collect the Ri,j terms for i, j ∈ {0, 1}, we now get:

(z2 − 1)
2
R•−

m1,m2
= (z2m1 − 1)(z2m2 + z2m2−1 − z − 1)R1,1

− (z2m1 − 1)(z2m2 + z2m2−1 − z3 − z2)R1,0

− (z2m1 − z2)(z2m2 + z2m2−1 − z − 1)R0,1

+ (z2m1 − z2)(z2m2 + z2m2−1 − z3 − z)R0,0 ,

= (z2m1 − 1)(z2m2−1 − 1)(z + 1)R1,1

− (z2m1 − 1)(z2m2−1 − z2)(z + 1)R1,0

− (z2m1 − z2)(z2m2−1 − 1)(z + 1)R0,1

+ (z2m1 − z2)(z2m2−1 − z2)(z + 1)R0,0 .

Next, we divide through by (z + 1) and expand the remaining terms on the left hand

side:

(z − 1)2(z + 1)R•−
m1,m2

= (z2m1+2m2−1 − z2m1 − z2m2−1 + 1)R1,1

− (z2m1+2m2−1 − z2m1+2 − z2m2−1 + z2)R1,0

− (z2m1+2m2−1 − z2m1 − z2m2+1 + z2)R0,1

+ (z2m1+2m2−1 − z2m1+2 − z2m2+1 + z4)R0,0 .

Finally, using (4.3), we get:

(z − 1)2(z+1)R•−
m1,m2

(z) = z2m1+2m2−1B1,1(z)−z2m1B1,0(z)−z2m2−1B0,1(z)+B0,0(z) .

(4.6)
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This is precisely (4.5), in its expanded form.

As previously mentioned, finding this formula is not particularly difficult. The

complications arise when trying to decide what exactly is the ‘best’ formula (that is,

what is the most useful for our future experiments), and how this can best be presented.

Once these are decided, the actual proof is relatively straightforward.

Moreover, once we have done this once, it is even more straightforward to find explicit

formulas for all other combinations. Let us next look at a mirror of Lemma 4.2.2:

Lemma 4.2.3. Let G be a digraph on n ≥ 1 vertices and (v1, v2) be a list of two (not

necessarily distinct) vertices of G. Let G−•
m1,m2

be the digraph obtained by attaching one

endvertex of a new negatively charged pendant path with m1 vertices to the vertex v1,

and attaching one endvertex of a new neutrally charged pendant path with m2 vertices to

the vertex v2 (so, G−•
m1,m2

will have m1 +m2 more vertices than G).

Let R−•
m1,m2

be the reciprocal polynomial of G−•
m1,m2

. Then, if both mi ≥ 1, we have:

(z − 1)2(z + 1)R−•
m1,m2

(z) =
∑

ϵ1,ϵ2∈{0,1}

c−•(ϵ1, ϵ2)z
2(
∑

ϵimi)−ϵ1Bϵ1,ϵ2(z) , (4.7)

for some integer polynomials Bϵ1,ϵ2(z), as defined in (4.3), that depend on G and (v1, v2),

but not on m1,m2, and where c−• = c•− .

Remark. We note that (4.7) is almost the same formula as (4.5); the sole exception is

in the former, we have a “−ϵ1” term in the exponent of z, as opposed to a “−ϵ2” term.

The proof, again, is almost the same as the proof of Lemma 4.2.2. We highlight the

main difference, which occurs at the start, and then briefly state the effect that this

difference results in.

Proof. Let H = G•
m2

= Gm2 ; the digraph G with a neutrally charged pendant path of

length m2 attached to the specified vertex v2. Then, we can think of the digraph G−•
m1,m2

as H−
m1

; the digraph H with a negatively charged pendant path of length m1 attached

to the specified vertex v1.
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We can then apply (3.6), as found in Lemma 3.3.2, to give us:

R•−
m1,m2

(z) = Rm1,m2(z) + zRm1−1,m2(z) .

We see that the second term on the left hand side here is slightly different. This

creates changes to the values obtained throughout the calculations and manipulations

of the proof (compared to that of Lemma 4.2.2), but does not affect the method. This

method will give us the final result, in a form similar to that of (4.6).

We now state the corresponding results for the addition of one positively charged

pendant path, and one neutral pendant path.

Lemma 4.2.4. Let G be a digraph on n ≥ 1 vertices and (v1, v2) be a list of two (not

necessarily distinct) vertices of G. Let G+•
m1,m2

be the digraph obtained by attaching one

endvertex of a new positively charged pendant path to the vertex v1 with m1 vertices, and

attaching one endvertex of a new neutrally charged pendant path with m2 vertices to the

vertex v2 (so, G+•
m1,m2

will have m1 +m2 more vertices than G).

Let R+•
m1,m2

be the reciprocal polynomial of G+•
m1,m2

. Then, if both mi ≥ 1, we have:

(z + 1)2(z − 1)R+•
m1,m2

(z) =
∑

ϵ1,ϵ2∈{0,1}

c+•(ϵ1, ϵ2)z
2(
∑

ϵimi)−ϵ1Bϵ1,ϵ2(z) ,

for some integer polynomials Bϵ1,ϵ2(z), as defined in (4.3), that depend on G and (v1, v2),

but not on m1,m2. Here,

c+•(ϵ1, ϵ2) =



1 , if ϵ1 = ϵ2 = 1 ,

−1 , if ϵ1 = 1, ϵ2 = 0 ,

1 , if ϵ1 = 0, ϵ2 = 1 ,

−1 , if ϵ1 = ϵ2 = 0 .

Lemma 4.2.5. Let G be a digraph on n ≥ 1 vertices and (v1, v2) be a list of two (not

necessarily distinct) vertices of G. Let G•+
m1,m2

be the digraph obtained by attaching one

endvertex of a new neutrally charged pendant path with m1 vertices to the vertex v1, and

attaching one endvertex of a new positively charged pendant path with m2 vertices to the
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vertex v2 (so, G•+
m1,m2

will have m1 +m2 more vertices than G).

Let R•+
m1,m2

be the reciprocal polynomial of G•+
m1,m2

. Then, if both mi ≥ 1, we have:

(z + 1)2(z − 1)R•+
m1,m2

(z) =
∑

ϵ1,ϵ2∈{0,1}

c•+(ϵ1, ϵ2)z
2(
∑

ϵimi)−ϵ2Bϵ1,ϵ2(z) ,

for some integer polynomials Bϵ1,ϵ2(z), as defined in (4.3), that depend on G and (v1, v2),

but not on m1,m2, and where c•+ is the function:

c•+(ϵ1, ϵ2) =



1 , if ϵ1 = ϵ2 = 1 ,

1 , if ϵ1 = 1, ϵ2 = 0 ,

−1 , if ϵ1 = 0, ϵ2 = 1 ,

−1 , if ϵ1 = ϵ2 = 0 .

We do not give details of the proofs for these Lemmas, beyond noting that it is

effectively the same as the proof of Lemma 4.2.2 and stating the following, which follow

after applying (3.6) from the proof of Lemma 3.3.2:

R+•
m1,m2

(z) = Rm1,m2(z)− zRm1−1,m2(z) ,

R•+
m1,m2

(z) = Rm1,m2(z)− zRm1,m2−1(z) .

4.2.2 Charging Two Pendants

We now look at the shape of the reciprocal polynomial of a digraph that has been grown

by attaching two charged pendant paths. We first look at the situation where we attach

two pendant paths of the same charge (either both positive or both negative), and then

we move to the case where we attach opposing charged pendant paths.

It should come as no surprise that the statements, results and proofs will all be

extremely similar to those that we have already seen.

Lemma 4.2.6. Let G be a digraph on n ≥ 1 vertices and (v1, v2) be a list of two (not

necessarily distinct) vertices of G. Let G−−
m1,m2

be the digraph obtained by attaching one

endvertex of a new mi-vertex negatively charged pendant path to the vertex vi, for i = 1, 2

(so, G−−
m1,m2

will have m1 +m2 more vertices than G).

Let R−−
m1,m2

be the reciprocal polynomial of G−−
m1,m2

. Then, if both mi ≥ 1, we have:
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(z − 1)2R−−
m1,m2

(z) =
∑

ϵ1,ϵ2∈{0,1}

(−1)
∑

ϵiz2(
∑

ϵimi)−
∑

ϵiBϵ1,ϵ2(z) , (4.8)

for integer polynomials Bϵ1,ϵ2(z), as defined in (4.3), that depend on G and (v1, v2), but

not on m1,m2.

Proof. Let H = G−
m1

; the digraph G with a negatively charged pendant path of length

m1 attached to the specified vertex v1. Then, we can think of the digraph G−−
m1,m2

as

H−
m2

; the digraph H with a negatively charged pendant path with m2 vertices attached

to the specified vertex v2.

Writing R∗∗
m1,m2

for R∗∗
m1,m2

(z), we can then apply (3.6) from Lemma 3.3.2 twice, to

give us:

R−−
m1,m2

= R−•
m1,m2

+ zR−•
m1,m2−1

= (Rm1,m2 + zRm1−1,m2) + z(Rm1,m2−1 + zRm1−1,m2−1) .

Whilst further manipulation returns:

R−−
m1,m2

= Rm1,m2 + z(Rm1−1,m2 +Rm1,m2−1) + z2Rm1−1,m2−1 .

We then proceed in the same fashion as shown in the proof of Lemma 4.2.2 to arrive

at the result.

It is worth noting that because we have to apply (3.6), as found in Lemma 3.3.2,

twice, we have to work with more terms when simplifying our formula. This makes

the calculations and required manipulations slightly longer, but the heart of the proof

remains the same.

We now state the equivalent Lemma for attaching two positively charged pendant

paths. We shall omit any details of the proof, owing to the fact that all details should

be clear at this point.

Lemma 4.2.7. Let G be a digraph on n ≥ 1 vertices and (v1, v2) be a list of two (not

necessarily distinct) vertices of G. Let G++
m1,m2

be the digraph obtained by attaching one
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endvertex of a new positively charged pendant path with mi vertices to the vertex vi, for

i = 1, 2 (so, G++
m1,m2

will have m1 +m2 more vertices than G).

Let R++
m1,m2

be the reciprocal polynomial of G++
m1,m2

. Then, if both mi ≥ 1, we have:

(z + 1)2R++
m1,m2

(z) =
∑

ϵ1,ϵ2∈{0,1}

z2(
∑

ϵimi)−
∑

ϵiBϵ1,ϵ2(z) , (4.9)

for integer polynomials Bϵ1,ϵ2(z), as defined in (4.3), that depend on G and (v1, v2), but

not on m1,m2.

It again should not be too much of a surprise that the formulas in these cases are

very similar to each other, as well as being incredibly similar to those that we have seen

already.

Finally, let us turn to the cases where we attach two pendant paths with different

charges. Again, we do not provide details of the corresponding proofs.

Lemma 4.2.8. Let G be a digraph on n ≥ 1 vertices and (v1, v2) be a list of two (not

necessarily distinct) vertices of G. Let G+−
m1,m2

be the digraph obtained by attaching one

endvertex of a new positively charged pendant path with m1 vertices to the vertex v1, and

attaching one endvertex of a new negatively charged pendant path with m2 vertices to the

vertex v2 (so, G+−
m1,m2

will have m1 +m2 more vertices than G).

Let R+−
m1,m2

be the reciprocal polynomial of G+−
m1,m2

. Then, if both mi ≥ 1, we have:

(z2 − 1)R+−
m1,m2

(z) =
∑

ϵ1,ϵ2∈{0,1}

c+−(ϵ1, ϵ2)z
2(
∑

ϵimi)−
∑

ϵiBϵ1,ϵ2(z) , (4.10)

for integer polynomials Bϵ1,ϵ2(z), as defined in (4.3), that depend on G and (v1, v2), but

not on m1,m2, and where c+− is the function:
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c+−(ϵ1, ϵ2) =



1 , if ϵ1 = ϵ2 = 1 ,

−1 , if ϵ1 = 1, ϵ2 = 0 ,

1 , if ϵ1 = 0, ϵ2 = 1 ,

−1 , if ϵ1 = ϵ2 = 0 .

Lemma 4.2.9. Let G be a digraph on n ≥ 1 vertices and (v1, v2) be a list of two (not

necessarily distinct) vertices of G. Let G−+
m1,m2

be the digraph obtained by attaching

one endvertex of a new negatively charged pendant path with m1 to the vertex v1, and

attaching one endvertex of a new positively charged pendant path with m2 vertices to the

vertex v2 (so, G−+
m1,m2

will have m1 +m2 more vertices than G).

Let R−+
m1,m2

be the reciprocal polynomial of G−+
m1,m2

. Then, if both mi ≥ 1, we have:

(z2 − 1)R−+
m1,m2

(z) =
∑

ϵ1,ϵ2∈{0,1}

c−+(ϵ1, ϵ2)z
2(
∑

ϵimi)−
∑

ϵiBϵ1,ϵ2(z) , (4.11)

for integer polynomials Bϵ1,ϵ2(z), as defined in (4.3), that depend on G and (v1, v2), but

not on m1,m2, and where c−+ is the function:

c−+(ϵ1, ϵ2) =



1 , if ϵ1 = ϵ2 = 1 ,

1 , if ϵ1 = 1, ϵ2 = 0 ,

−1 , if ϵ1 = 0, ϵ2 = 1 ,

−1 , if ϵ1 = ϵ2 = 0 .

Again, we see that these formulas are also very similar.

4.2.3 Overview of Charged Pendants

We can encapsulate all of these results in one Proposition:

Proposition 4.2.10. Let G be a digraph on n ≥ 1 vertices and (v1, v2) be a list of

two (not necessarily distinct) vertices of G. Let G∗∗
m1,m2

be the digraph obtained by

attaching one endvertex of a new pendant path with m1 to the vertex v1, and attaching

one endvertex of a new pendant path with m2 vertices to the vertex v2 (so, G∗∗
m1,m2

will
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have m1 +m2 more vertices than G).

Let R∗∗
m1,m2

be the reciprocal polynomial of G∗∗
m1,m2

. Then, if both mi ≥ 1, we have:

k(z)R∗∗
m1,m2

(z) =
∑

ϵ1,ϵ2∈{0,1}

c∗∗(ϵ1, ϵ2)z
2(
∑

ϵimi)−d∗∗(ϵ1,ϵ2)Bϵ1,ϵ2(z) , (4.12)

where:

• the Bϵ1,ϵ2(z) are integer polynomials, as defined in (4.3), that depend on G and

(v1, v2), but not on m1,m2,

• the c∗∗(ϵ1, ϵ2) take values ±1 and depend only on the charges of the pendant paths,

• the d∗∗(ϵ1, ϵ2) take values in {0, 1, 2} and depend only on the charges of the pendant

paths,

• k(z) ̸= 1 divides (z2 − 1)
2 .

Proposition 4.2.10 does give us an insight of the shape of the reciprocal polynomial.

It also further helps us in calculating the Mahler measure of a digraph with two pendant

paths attached to it. However, seeing each situation individually and more explicitly, as

shown through Lemmas 4.2.1–4.2.9, is arguably the clearest way to see exactly what is

happening in each individual scenario, even if it is perhaps a verbose way of doing so.

4.2.4 Attaching Snake Tongues – A Slithering Extra

So far, we have looked at attaching pendant paths to a digraph where the final vertex

has some possible charge. Our reason for attaching these sorts of paths is because they

are cyclotomic. However, we also know from Proposition 3.5.17 that the snake tongue

(the digraph S seen in Figure 3.10) is cyclotomic. As such, it is worth asking what

happens if we attach these to a digraph, as well as our charged pendant paths.

In practice, these snake tongue pendant paths are very similar to our charged pendant

paths. We simply add a “fork” of two vertices to the end of the pendant path, rather

than a charged vertex. So, by considering these as well, it means that there are four

possible ways that our pendant paths can stop:
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, + , − , or .

For avoidance of doubt, if we attach a snake tongue to a digraph, we are attaching

an uncharged pendant path of, say, m vertices, and then attaching the two additional

vertices (which make up the fork of the snake tongue) to the end of the pendant path.

This means if we attach a snake tongue to a digraph, we are attaching a total of m+ 2

vertices to our digraph. This is slightly different to attaching charged pendant paths,

where we are attaching a total of m vertices. Figure 4.4 may help make this slightly

clearer.

G
v

(m− 1)

G
v

(m− 1) ∗

G
v

(m− 1)

Figure 4.4: Visualisations of attaching pendant paths and snake tongues to a digraph.

Of course, there is nothing stopping us from changing this. We could, for example,

fix it so that the snake tongue adds a total of m vertices (by having a path of m − 2

neutral vertices, then attaching the fork to the leaf of that path).

However, we have chosen this convention for two reasons. Firstly, it streamlines our

future calculations. Secondly, it fixes a convention that with our attached path, the final

vertex – and only the final vertex – forms part of a cyclotomic digraph attached to the

end of our path. This is a convention we have implicitly, and up until now, unnecessarily,

used (since a single vertex, regardless of charge, is a cyclotomic digraph). We see why
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we have adopted this convention in Section 4.4.

Our aim here is as it was with attaching charged pendant paths: we want to find the

shape of the reciprocal polynomial after attaching these pendant paths. The ideas for

each individual case are effectively the same as those seen in Lemmas 4.2.1–4.2.9, with

the obvious change that we are working with forks rather than charges. As such, we

give an analogue of Proposition 4.2.10, featuring snake tongues:

Proposition 4.2.11. Let G be a digraph on n ≥ 1 vertices and (v1, v2) be a list of two

(not necessarily distinct) vertices of G. Let G††
m1,m2 be the digraph obtained by attaching

one endvertex of a new pendant path with m1 vertices to the vertex v1, and attaching one

endvertex of a new pendant path with m2 vertices to the vertex v2, such that at least one

of the pendant paths has a fork attached, and so is in fact a snake tongue (so, G††
m1,m2

will have m1 +m2 + 2s more vertices than G, where s is the number of forks attached).

Let R††
m1,m2 be the reciprocal polynomial of G††

m1,m2. Then, if both mi ≥ 1,we have:

κ(z)R††
m1,m2

(z) =
∑

ϵ1,ϵ2∈{0,1}

γ††(ϵ1, ϵ2)z
2(
∑

ϵimi)−δ††(ϵ1,ϵ2)Bϵ1,ϵ2(z) , (4.13)

where:

• the Bϵ1,ϵ2(z) are integer polynomials, as defined in (4.3), that depend on G and

(v1, v2), but not on m1,m2,

• the γ††(ϵ1, ϵ2) take values ±1 and depend only on the ends of the pendant paths,

• the δ††(ϵ1, ϵ2) take values in {0, 1} and depend only on the ends of the pendant

paths,

• κ(z) is a Kronecker-cyclotomic polynomial .

We omit details of the full proof here, as we have acknowledged the fact that the

method and thought process behind it remains the same as what we have seen with

Proposition 4.2.10. However, it is worth seeing what the reciprocal polynomial of a

digraph is when we attach a solitary snake tongue, and no other pendants. This helps

create an analogy with Lemma 3.3.2, and gives us a parallel for (3.6); important features

needed to understand how (4.13) can be derived.
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Lemma 4.2.12. Let G be a digraph on n ≥ 1 vertices with a distinguished vertex v. For

each m ≥ 0, let G<
m be the graph obtained by attaching the end of a snake tongue, with a

total of m+ 2 vertices, to the vertex v (so G<
m has m+ 2 more vertices than G).

Let R<
m(z) be the reciprocal polynomial of G<

m. Then, for m ≥ 2, we have:

1

z2 + 1
R<

m(z) = z2mB(z) +B∗(z) , (4.14)

for some monic integer polynomial B(z) that depends on G and v, but not m.

Proof. We can label the digraph G<
m appropriately so that the adjacency matrix is:

A =



0 0 1

0 0 1

1 1 0 1

1 0
. . .

. . . . . . 1

1 0 1

1 0 1

1
AG



.

Labelling the characteristic polynomial of G<
m as χ<

m, we find a relation similar to (3.4)

and (3.5) by expanding det(xI −A) along the first three rows appropriately:

χ<
m(x) = xχm+1(x)− xχm−1(x) . (4.15)

We now take the reciprocalisation of this, which after rearranging appropriately gives us:

R<
m(z) = (z2 + 1)

(
Rm+1(z)− z2Rm−1(z)

)
. (4.16)

Finally, we use (3.3) to arrive at our result.

For additional exposure around Proposition 4.2.11, we include the explicit formulas
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for each case covered therein. We use a clear form of the notation just introduced: when

a pendant path has a fork at the end of it, we use the symbols > and < to represent this

(with the former representing a fork attached to the end of the “left” pendant path, with

m1 vertices, and the latter to the “right” pendant path, with m2 vertices). Each of these

formulas that follow is, of course, only valid under the conditions of Proposition 4.2.11.

Two forks:

R><
m1,m2

(z) =
∑

ϵ1,ϵ∈{0,1}

z2(
∑

ϵimi)Bϵ1,ϵ2(z) . (4.17)

One fork, one neutral vertex:

Here, we have two possible ways to attach these ‘pendant paths’, giving us two

different results. The first is:

(z2 − 1)R>•
m1,m2

(z) =
∑

ϵ1,ϵ∈{0,1}

c>•(ϵ1, ϵ2)z
2(
∑

ϵimi)Bϵ1,ϵ2(z) , (4.18)

where:

c>•(ϵ1, ϵ2) =



1 , if ϵ1 = ϵ2 = 1 ,

−1 , if ϵ1 = 1, ϵ2 = 0 ,

1 , if ϵ1 = 0, ϵ2 = 1 ,

−1 , if ϵ1 = ϵ2 = 0 .

The second is:

(z2 − 1)R•<
m1,m2

(z) =
∑

ϵ1,ϵ∈{0,1}

c•<(ϵ1, ϵ2)z
2(
∑

ϵimi)Bϵ1,ϵ2(z) , (4.19)

where:

c•<(ϵ1, ϵ2) =



1 , if ϵ1 = ϵ2 = 1 ,

1 , if ϵ1 = 1, ϵ2 = 0 ,

−1 , if ϵ1 = 0, ϵ2 = 1 ,

−1 , if ϵ1 = ϵ2 = 0 .

One fork, one positive vertex:

Here, we again have two possible ways to attach these ‘pendant paths’, giving us
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two different results. The first is:

(z + 1)R>+
m1,m2

(z) =
∑

ϵ1,ϵ∈{0,1}

z2(
∑

ϵimi)−ϵ2Bϵ1,ϵ2(z) . (4.20)

The second is:

(z + 1)R+<
m1,m2

(z) =
∑

ϵ1,ϵ∈{0,1}

z2(
∑

ϵimi)−ϵ1Bϵ1,ϵ2(z) , (4.21)

One fork, one negative vertex:

Here, we once again have two possible ways to attach these ‘pendant paths’, giving

us two different results. The first is:

(z − 1)R>−
m1,m2

(z) =
∑

ϵ1,ϵ∈{0,1}

c>−(ϵ1, ϵ2)z
2(
∑

ϵimi)−ϵ2Bϵ1,ϵ2(z) , (4.22)

where:

c>−(ϵ1, ϵ2) =



1 , if ϵ1 = ϵ2 = 1 ,

−1 , if ϵ1 = 1, ϵ2 = 0 ,

1 , if ϵ1 = 0, ϵ2 = 1 ,

−1 , if ϵ1 = ϵ2 = 0 .

The second is:

(z − 1)R−<
m1,m2

(z) =
∑

ϵ1,ϵ∈{0,1}

c−<(ϵ1, ϵ2)z
2(
∑

ϵimi)−ϵ1Bϵ1,ϵ2(z) , (4.23)

where:

c−<(ϵ1, ϵ2) =



1 , if ϵ1 = ϵ2 = 1 ,

1 , if ϵ1 = 1, ϵ2 = 0 ,

−1 , if ϵ1 = 0, ϵ2 = 1 ,

−1 , if ϵ1 = ϵ2 = 0 .

4.2.5 A Final Result

Between the results encapsulated in Propositions 4.2.10 and 4.2.11, we have sixteen ways

to attach two pendant paths (including pendant paths with forks attached to them) to a
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given digraph. In each case, the pendant paths we add are cyclotomic. Therefore, these

results give us a way of taking a digraph – which we can choose to not be cyclotomic –

and, in some combinatorial sense, make it close to being a cyclotomic digraph.

In chapter 5, we show how we implement these results in practice for finding digraphs

with small Mahler measures. Before we can use these results, however, it would be useful

to simplify them as much as possible. If nothing else, this just makes the corresponding

formulas more user-friendly to input when running experiments.

What is striking about the results from Propositions 4.2.10 and 4.2.11 is they can be

written in the following general form:

κ1(z)R(z) = κ2(z)L(z) ,

where κ1 and κ2 are Kronecker-cyclotomic polynomials, R is the reciprocal of the

resulting digraph and L is linear combination of some monic integer polynomials. Since

the Mahler measure is multiplicative, we then have that M(R) =M(L). Therefore, it is

worthwhile trying to see if we can make the function L(z) as simple as possible.

Indeed, it is possible to make such a simplification. Before stating the result, we

introduce a quick definition for convenience:

Definition 4.2.13. A decorated pendant path is a either a charged pendant path, or

a pendant path which ends in a fork.

Theorem 4.2.14. Let G be a digraph on n ≥ 1 vertices and (v1, v2) be a list of two (not

necessarily distinct) vertices of G. Let G‡‡
m1,m2 be the digraph obtained by attaching one

endvertex of a new decorated pendant path with m1 to the vertex v1, and attaching one

endvertex of a new decorated pendant path with m2 vertices to the vertex v2 (so, G‡‡
m1,m2

will have m1 +m2 + 2s more vertices than G, where s is the number of pendant paths

decorated with forks at the end).

Let R‡‡
m1,m2 be the reciprocal polynomial of G‡‡

m1,m2. Then, if both mi ≥ 1,we have:

κ1(z)R
‡‡
m1m2(z)

κ2(z)
= z2(m1+m2)B1,1(z) + c10(z)z

2m1B1,0(z)

+ c01(z)z
2m2B0,1(z) + c00(z)B0,0(z) ,

(4.24)
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where:

c10(z), c01(z) ∈ {1,−1, z,−z} , (4.25)

c00(z) = c10(z)c01(z) , (4.26)

and κ1(z) and κ2(z) are Kronecker-cyclotomic.

We again omit a proof here, but note that this result can be derived from Propositions

4.2.10 and 4.2.11 and Lemmas 4.2.1–4.2.9, albeit with slightly different manipulation of

the equations therein.

It is worth noting, however, that Theorem 4.2.14 gives the right hand side of (4.24)

in a slightly different form to what we have seen so far. In particular, we have that

the powers of z which accompany B1,0 and B0,1 are always at least 2m1 and 2m2

respectively, whereas in our previous formulations there were cases where they could

have been 2mi − k, for some k at most 2. As such, the Kronecker-cyclotomic factor on

the left hand side of (4.24) is usually slightly different to the previous equations as well.

This also explains why we have to divide by another Kronecker-cyclotomic factor, κ2, as

well.

Each decoration has a corresponding c10 and c01, which give a result for c00. There

are precisely sixteen pairwise combinations for the values c10 and c01, so this is a complete

correspondence. These are listed in Table 4.1, alongside the corresponding κ1 and κ2

factors.

We note that Table 4.1 shows us that the κ1 in particular are in fact very similar to

the Kronecker-cyclotomic terms we had previously seen. Indeed, we take the original

factor for the corresponding decoration, and then multiply by zγ , where γ is the number

of non-neutrally charged pendant paths attached to the original digraph. The κ2 factors

are in fact (z2 + 1)
s, where s is the number of snake tongues attached to the original

digraph.
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DL DR c10(z) c01(z) κ1 κ2

• • −1 −1 (z2 − 1)
2

1

• + z −1 (z + 1)2(z − 1)z 1

• − −z −1 (z − 1)2(z + 1)z 1

• < 1 −1 (z2 − 1) (z2 + 1)

+ • −1 z (z + 1)2(z − 1)z 1

+ + z z (z + 1)2z2 1

+ − −z z (z + 1)(z − 1)z2 1

+ < 1 z z(z + 1) (z2 + 1)

− • −1 −z (z − 1)2(z + 1)z 1

− + z −z (z + 1)(z − 1)z2 1

− − −z −z (z − 1)2z2 1

− < 1 −z z(z − 1) (z2 + 1)

> • −1 1 (z2 − 1) (z2 + 1)

> + z 1 z(z + 1) (z2 + 1)

> − −z 1 (z2 − 1) (z2 + 1)

> < 1 1 1 (z2 + 1)
2

Table 4.1: The possible decorations DL and DR and the corresponding values of c10, c01,

κ1 and κ2, as seen in (4.24).

This result gives us the sixteen different formulas that arise from the sixteen pairs of

decorated pendant paths we can attach to a given digraph. Since we are interested in

finding the Mahler measure of R‡‡
m1m2 , we can omit κ1(z) and κ2(z) from any calculations

(because they are Kronecker-cyclotomic and so have Mahler measure 1). This gives us

much simpler formulas to work, which primarily rely on the monic integer polynomial

Bi,j , which themselves rely on our original digraph G, and choice of vertices to grow

from.
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4.2.6 Some Straightforward Examples

As the concepts and results we have introduced here are particularly important, we give

some straightforward examples to demonstrate all the results we have seen. This will be

inclusive of everything we have seen so far in this Section.

We note, however, that because of their simplicity, the aim here is not to showcase

digraphs with small Mahler measure, nor to exhibit that our results are better than a

“brute force” method of calculation. Instead, the aim here is to give a further sense of

validity to the results we have seen so far by seeing examples in which they hold.

Example 4.2.15. Let G be the following digraph, with vertices v1 and v2 labelled:

v1 v2

.

We intend to attach two decorated pendant paths to G; one at v1 and one at v2. In

this case, we will fix pendant paths of certain lengths, and then see all sixteen reciprocal

polynomials of the resulting digraphs arising from all possible combinations of pendant

paths.

Before even fixing the lengths of our pendant paths, though, we can make some

useful preliminary calculations. As seen in Theorem 4.2.14, specifically (4.24), the monic

polynomials B1,1(z), B1,0(z), B0,1(z) and B0,0(z) are always present when we calculate

the reciprocal polynomial of our new digraph, regardless of the length of our pendant

paths, or their decorations. These Bi,j are exactly as defined in (4.3), which themselves

depend on the polynomials Ri,j(z) = RGi,j (z).

As such, our first step would be to calculate these polynomials. To calculate Ri,j(z),

we take G, and then attach i vertices to v1 and j vertices to v2. We then calculate the

reciprocal polynomial of the new resulting digraph. For example, to find R1,0(z), we

attach one vertex to v1, no vertices to v2, and then calculate the reciprocal polynomial

of the resulting digraph directly.
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These are:

R0,0 = z8 + 2z4 + 1 ,

R1,0 = z10 + z6 + z4 + 1 ,

R0,1 = z10 + z6 + z4 + 1 ,

R1,1 = z12 + z6 + 1 .

(4.27)

Following (4.3), we can now use these results to directly calculate our Bi,j :

B1,1 = z12 − 2z10 + z8 − z6 ,

B1,0 = −z8 + z6 − z4 ,

B0,1 = −z8 + z6 − z4 ,

B0,0 = −z6 + z4 − 2z2 + 1 .

(4.28)

Now, create a new digraph by attaching a path with m1 = 1 vertices to the vertex v1,

with a decoration DL at the end, and a path with m2 = 2 vertices to the vertex v2, with

a decoration DR at the end. So, our new digraph, which we refer to as G‡‡
1,2, looks like:

DL DR

v1 v2

.

We are referring to this digraph as G‡‡
1,2, to mirror the notation used in Theorem

4.2.14. In this notation, “‡‡” represents our decorations (one “‡” for each decoration).

As such, an alternative way to label this digraph could be GDLDR
1,2 . We choose to not

label the digraph in this way, owing to how untidy it looks in comparison. In either

case, we use the same notation we have introduced so far. For example, the digraph

G+−
1,2 would be:
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+ −
v1 v2

.

This corresponds with our notation as presented in Lemma 4.2.8, for example, as the

resulting reciprocal polynomial of this digraph would be R+−
1,2 (z).

Now let DL and DR be neutral vertices, giving us the digraph G••
1,2. It is not difficult

to calculate directly that the reciprocal polynomial here is R••
1,2(z) = z14 + 1.

By our knowledge of Theorem 4.2.14, we can use (4.28) and Table 4.1 to calculate the

right hand side of (4.24) explicitly in this case. In this case, as both of our decorations

are neutral vertices, we refer to the first line of Table 4.1 and see that c10(z) = −1 and

c01(z) = −1. So, letting m1 = 1, m2 = 2 and c10(z) = c01(z) = −1 in (4.24), we get:

z2(m1+m2)B1,1(z) + c10(z)z
2m1B1,0(z) + c01(z)z

2m2B0,1(z) + c00(z)B0,0(z)

=z6B1,1(z) + (−1)z2B1,0(z) + (−1)z4B0,1(z) + (−1)(−1)B0,0(z)

=z6
(
z12 − 2z10 + z8 − z6

)
− z2

(
−z8 + z6 − z4

)
− z4

(
−z8 + z6 − z4

)
+
(
−z6 + z4 − 2z2 + 1

)
=z18 − 2z16 + z14 + z4 − 2z2 + 1 .

Again from the first line of Table 4.1 (and also via Lemma 4.2.1), we have that

κ1(z) = (z2 − 1)
2 and κ2(z) = 1 in (4.24). This gives us that the left hand side of (4.24)

is (z2 − 1)
2
R••

1,2(z). Combining this with the result above and using (4.24), we get:

(z2 − 1)
2
R••

1,2(z) = z18 − 2z16 + z14 + z4 − 2z2 + 1 .

This gives us that R••
1,2(z) = z14 + 1 which agrees with our direct calculation.

Before moving on, we again stress that our aim here is to provide further validity to

Theorem 4.2.14, and demonstrate the calculations in practice, and not to show a case of

where this Theorem is simpler than direct calculations.

We now look at a different pair of decorations. Consider the case where DL is a
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positive vertex and DR is a fork. So, we are considering the digraph G+<
1,2 , and want

to find R+<
1,2 (z). We are familiar with this object and notation from (4.21), and again

intend to verify that the result presented in Theorem 4.2.14 holds in this case. We can

calculate (again, easily by hand) that the reciprocal polynomial in this case is:

R+<
1,2 (z) = z18 − z17 − z14 − 2z10 + 2z9 − 2z8 − z4 − z + 1.

By our knowledge of Theorem 4.2.14, we can use (4.28) and Table 4.1 to calculate

the right hand side of (4.24) explicitly in this case. In this case, our left decoration, DL,

is a positive vertex, and our right decoration, DR, is a fork. So, we refer to the eighth

line of Table 4.1 and see that c10(z) = 1 and c01(z) = z. Thus, letting m1 = 1, m2 = 2,

c10(z) = 1 and c01(z) = z in (4.24), we get:

z2(m1+m2)B1,1(z) + c10(z)z
2m1B1,0(z) + c01(z)z

2m2B0,1(z) + c00(z)B0,0(z)

=z6B1,1(z) + (1)z2B1,0(z) + (z)z4B0,1(z) + (1)(z)B0,0(z)

=z6
(
z12 − 2z10 + z8 − z6

)
+ z2

(
−z8 + z6 − z4

)
+ z5

(
−z8 + z6 − z4

)
+ z

(
−z6 + z4 − 2z2 + 1

)
=z18 − 2z16 + z14 − z13 − z12 + z11 − z10 − z9 + z8 − z7 − z6 + z5 − 2z3 + z .

Again from the eighth line of Table 4.1 (and via (4.21)), we have that κ1(z) = z(z+1) and

κ2(z) = (z2+1) in (4.24). This gives us that the left hand side of (4.24) is z(z+1)
z2+1

R+<
1,2 (z).

Combining this with the result above and using (4.24), we get:

z(z + 1)

z2 + 1
R+<

1,2 (z) =

z18 − 2z16 + z14 − z13 − z12 + z11 − z10 − z9 + z8 − z7 − z6 + z5 − 2z3 + z .

This gives us that R+<
1,2 (z) = z18 − z17 − z14 − 2z10 +2z9 − 2z8 − z4 − z+1, which again

agrees with our direction calculation.

Finally, we give the reciprocal polynomials for all sixteen possible decorations, in

Table 4.2. Using Table 4.1 and (4.28), one can verify that Theorem 4.2.14 holds and is

indeed valid for this particular digraph. The results presented in Table 4.2 list each pair

of decorations, DL and DR, and the resulting reciprocal polynomial R‡‡
1,2(z) = RDLDR

1,2 (z).
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DL DR R‡‡
1,2(z)

• • z14 + 1

• + z14 − z13 − z7 − z + 1

• − z14 + z13 + z7 + z + 1

• < z18 − z14 − 2z10 − 2z8 − z4 + 1

+ • z14 − z13 − z9 − z5 + z + 1

+ + z14 − 2z13 + z12 − z9 + z8 − z7 + z6 − z5 + z2 − 2z + 1

+ − z14 − z12 − z9 − z8 + z7 − z6 − z5 − z2 + 1

+ < z18 − z17 − z14 − 2z10 + 2z9 − 2z8 − z4 − z + 1

− • z14 + z13 + z9 + z5 + z + 1

− + z14 − z12 + z9 − z8 − z7 − z6 + z5 − z2 + 1

− − z12 + 2z13 + z12 + z9 + z8 + z7 + z6 + z5 + z2 + 2z + 1

− < z18 + z17 − z14 − 2z10 − 2z9 − 2z8 − z4 + z + 1

> • z18 − z14 − 2z12 − 2z10 − 2z8 − 2z6 − z4 + 1

> +
z18 − z17 − z14 + z13 − 2z12 + z11 − 2z10

+2z9 − 2z8 + z7 − 2z6 + z5 − z4 − z + 1

> −
z18 + z17 − z14 − z13 − 2z12 − z11 − 2z10

−2z9 − 2z8 − z7 − 2z6 − z5 − z4 + z + 1

> < z22 − 2z18 − 2z16 − 3z14 − 2z12 − 2z10 − 3z8 − 2z6 − 2z4 + 1

Table 4.2: Reciprocal polynomials for each pair of decorations in Example 4.2.15.

We now look at a second example, which exhibits an actual digraph (as opposed

to a signed graph). This example is much the same as the previous example, with its

main aim being to give further verification that Theorem 4.2.14 is indeed valid. We

follow the same methods as presented in Example 4.2.15, but omit some of the details

of calculations.
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Example 4.2.16. Let G be the following digraph, with vertices v1 and v2 labelled:

+

1 −1

v1 v2

.

Under this set up, we can now calculate the Ri,j(z) = RGi,j (z) for i, j ∈ {0, 1},

meaning we can then calculate the corresponding Bi,j(z). These are:

R0,0 = z8 − z7 + 2z6 − 3z5 + 2z4 − 3z3 + 2z2 − z + 1 ,

R1,0 = z10 − z9 + 2z8 − 3z7 + z6 − 3z5 + z4 − 3z3 + 2z2 − z + 1 ,

R0,1 = z10 − z9 + 2z8 − 3z7 + 3z6 − 4z5 + 3z4 − 3z3 + 2z2 − z + 1 ,

R1,1 = z12 − z11 + 2z10 − 3z9 + 2z8 − 4z7 + z6 − 4z5 + 2z4 − 3z3 + 2z2 − z + 1 ,

(4.29)

and

B1,1 = z12 − z11 − z9 − z8 + z7 − z6 ,

B1,0 = z8 − z7 − z6 − z4 ,

B0,1 = −z8 − z6 − z5 + z4 ,

B0,0 = −z6 + z5 − z4 − z3 − z + 1 .

(4.30)

Now, create a new digraph by attaching a path with m1 = 2 vertices to the vertex v1,

with a decoration DL at the end, and a path with m2 = 3 vertices to the vertex v2, with

a decoration DR at the end. So, our new digraph, which we refer to as G‡‡
2,3, looks like:

+

DL DR

1 −1

v1 v2

.
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Now let DL be a positively charged vertex and DR be the fork of a snake tongue,

giving us the digraph G+<
2,3 . It is not difficult to calculate directly that the reciprocal

polynomial here is:

R+<
2,3 (z) = z22 − 2z21 + 3z20 − 5z19 + 4z18 − 4z17 + 2z16 − 2z15 + z14 − 3z13 + 3z12

− 4z11 + 3z10 − 3z9 + z8 − 2z7 + 2z6 − 4z5 + 4z4 − 5z3 + 3z2 − 2z + 1 .

By our knowledge of Theorem 4.2.14, we can use (4.30) and Table 4.1 to calculate

the right hand side of (4.24) explicitly in this case:

z2(2+3)B1,1(z) + (1)z2(2)B1,0(z) + (z)z2(3)B0,1(z) + (1)(z)B0,0(z) =

z22 − z21 − z19 − z18 + z17 − z16 − z15 − z13 − z10 − z8 − z7 + z6 − z5 − z4 − z2 + z .

From Table 4.1 (and via Lemma 4.2.1), we have that κ1(z) = z(z+1) and κ2(z) = z2+1

in (4.24). This gives us that the left hand side of (4.24) is:

z(z + 1)

z2 + 1
R+<

2,3 (z) =

z22 − z21 − z19 − z18 + z17 − z16 − z15 − z13 − z10 − z8 − z7 + z6 − z5 − z4 − z2 + z .

So both sides agree and our results holds in this case.

Finally, for this example, we now give the reciprocal polynomials for all sixteen

possible decorations. Using Table 4.1 and (4.30), one can verify that Theorem 4.2.14

holds in each case and is indeed valid. We present each polynomial in its factorised form

for ease of presentation.
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DL DR R‡‡
1,2(z)

• •
Φ4(z)(z

16 − z15 + z14 − 2z13 + z12 − 2z11

−3z9 + z8 − 3z7 − 2z5 + z4 − 2z3 + z2 − z + 1)

• + Φ4(z)Φ6(z)(z
14 − z13 − 2z11 + z10 + z8 − 2z7 + z6 + z4 − 2z3 − z + 1)

• − Φ4(z)(z
16 − z13 − z12 − z11 − 2z10 − 3z9 − 2z8 − 3z7 − 2z6 − z5 − z4 − z3 + 1)

• < Φ4(z)
2(z18 − z17 − z15 − z12 − z11 + z10 + z8 − z7 − z6 − z3 − z + 1)

+ •
z18 − 2z17 + 3z16 − 5z15 + 5z14 − 6z13 + 5z12 − 7z11

+6z10 − 9z9 + 6z8 − 7z7 + 5z6 − 6z5 + 5z4 − 5z3 + 3z2 − 2z + 1

+ +
Φ6(z)(z

16 − 2z15 + 2z14 − 4z13 + 4z12 − 3z11 + 4z10

−5z9 + 4z8 − 5z7 + 4z6 − 3z5 + 4z4 − 4z3 + 2z2 − 2z + 1)

+ − Φ4(z)(z
16 − z15 − z13 − z10 − 2z9 − 2z7 − z6 − z3 − z + 1)

+ <
Φ4(z)(z

20 − 2z19 + 2z18 − 3z17 + 2z16 − z15 − z13 + z12

−2z11 + 2z10 − 2z9 + z8 − z7 − z5 + 2z4 − 3z3 + 2z2 − 2z + 1)

− • Φ3(z)Φ6(z)(z
14 − z11 − 2z10 − z9 − z8 − z7 − z6 − z5 − 2z4 − z3 + 1)

− + Φ3(z)Φ6(z)(z
14 − z13 − z11 − z10 + z9 + z5 − z4 − z3 − z + 1)

− − Φ2(z)
2Φ3(z)Φ4(z)

2Φ6(z)(z
8 − z7 − z6 + z4 − z2 − z + 1)

− <
Φ2(z)

2Φ3(z)Φ4(z)Φ6(z)(z
14 − 2z13 + 2z12 − 3z11 + 2z10

−z9 + z8 − z7 + z6 − z5 + 2z4 − 3z3 + 2z2 − 2z + 1)

> •
Φ4(z)(z

20 − z19 + z18 − 2z17 − z15 − z14 − z13 − 2z12

−z11 − 4z10 − z9 − 2z8 − z7 − z6 − z5 − 2z3 + z2 − z + 1)

> + Φ4(z)Φ6(z)(z
18 − z17 − 2z15 + z13 + z12 − 2z10 − 2z8 + z6 + z5 − 2z3 − z + 1)

> − Φ2(z)Φ4(z)
2Φ10(z)z(z

12 − z11 − z9 − z7 − z5 − z3 − z + 1)

> <

Φ2(z)
2Φ4(z)

2(z20 − 3z19 + 5z18 − 8z17 + 10z16 − 11z15

+11z14 − 11z13 + 10z12 − 9z11 + 8z10 − 9z9 + 10z8

−11z7 + 11z6 − 11z5 + 10z4 − 8z3 + 5z2 − 3z + 1)

Table 4.3: Reciprocal polynomials for each pair of decorations in Example 4.2.16.

Before moving on, we again stress that Examples 4.2.15 and 4.2.16 do not exist to

demonstrate the usefulness of our results here. They are provided solely to aid in the

clarity of the results presented so far, and to give a sense of validity for some where we

have not provided all of the details of the proof. However, this puts us in a good position

to run our experiments and begin to actually find digraphs with small Mahler measures

explicitly. This outlines the usefulness of these results, as we will see in chapter 5.
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4.3 Growing Towards a Nice Shape

Our aim in this Section is to establish the following Theorem concerning the general

shape of the reciprocal polynomial of a digraph that has one or more of its signed edges

subdivided:

Theorem 4.3.1. Let G be a digraph with r distinguished signed edges e1, · · · , er, each

joining two neutral vertices. For integers t1, · · · , tr ≥ 0, let G[t1,···,tr] be the digraph

obtained from G by subdividing each edge ei by adding ti new vertices. Thus ei is replaced

by

ti or ti

according as its sign is positive or negative. Then there is a polynomial

Q(z0, z1, · · · , zr) ∈ Z[z0, z1, · · · , zr] ,

depending on G but independent of t1, · · · , tr, such that G[t1,···,tr] has reciprocal polynomial:

Q(z, zt1 , zt2 , · · · , ztr)
z2r(z2 − 1)r

.

Remark. This Theorem does not exclude the possibility of pendant paths; for example,

if one of the edges ei has a vertex which is a leaf.

Remark. If all growing paths are pendant (that is to say, if all the edges have a vertex

that has a leaf), then this is precisely Lemma 4.1.3, just stated in a different way.

The latter remark here shows how Theorem 4.3.1 is an expansion of Lemma 4.1.3. As

mentioned, the concept of subdividing edges within our digraph will be able to help us

turn suitable digraph candidates into ones which are, combinatorially, almost cyclotomic.

As such, this is a very important tool in our hunt for small Mahler measures.

4.3.1 Deletion and Contraction

A tool in our proof will be a tiny modification of a deletion-contraction theorem due to

Rowlinson [33]. The theorem from Rowlinson was stated and proved for multigraphs
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(graphs where multiple edges are allowed between vertices), but an examination of

the proof shows that it easily extends to Z-weighted digraphs (more general than the

digraphs we need). So, prior to proving our Theorem, we need to state and prove this

generalisation.

Firstly, we fix some notation and definitions, many of which are extensions to those

that we are familiar with.

Definition 4.3.2. A Z-weighted digraph is a type of graph such that:

• We have (directed) arcs between vertices,

• We allow directed, weighted loops,

• We can attach weights to our arcs, which are arbitrary elements of Z.

We see how this is more general than the digraphs which we use: we only allow

signed arcs (values ±1) and our loops are represented by charges (which again are values

±1 only). As with our digraphs, the integer values for loops (the extension of charges)

appear as diagonal entries of the adjacency matrix, and the integer arc weights appear

as off-diagonal entries.

Definition 4.3.3. Let G be a Z-weighted digraph, and A = (aij) be its adjacency matrix.

If aij = aji ̸= 0 for some i and j, then we say that there is a signed multiedge between

i and j.

Perhaps unsurprisingly, the deletion-contraction theorem from Rowlinson revolves

around ‘deleting’ and ‘contracting’ multiedges within multigraphs. We now formalize

these definitions and fix some convenient notation which we will use:

Definition 4.3.4 (Deletion of a multiedge). Let G be a Z-weighted digraph for which

there is a signed multiedge between vertices u and v. We denote the deletion of the signed

multiedge between u and v by G− [uv]. This deletes (i.e. removes) the signed multiedge,

and nothing else.

Remark. If G has adjacency matrix A = (aij), then the adjacency matrix of G− [uv]

is obtained from A by setting auv = avu = 0.
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Definition 4.3.5 (Deletion of a vertex). Let G be a Z-weighted digraph. We denote

the deletion of the vertex u by G− u. This deletes the vertex u, and all multiedges and

arcs incident with u.

Remark. If G has adjacency matrix A = (aij), then the adjacency matrix of G− u is

obtained from A by deleting row u and column u.

Remark. We can delete more than one vertex from a Z-weighted digraph. For example,

if we delete vertices u and v, we denote this by G− u− v, and to obtain the adjacency

matrix, we delete rows u and v, and columns u and v from A = AG.

We further note that G− u− v = G− v − u.

Definition 4.3.6 (Contraction of a multiedge). Let G be a Z-weighted digraph for

which there is a signed multiedge between vertices u and v. We denote the contraction of

the signed multiedge between u and v by G∗.

This ‘amalgamates’ the vertices u and v, by summing the weights of their loops,

whilst the weight of the multiedge does not contribute.

Remark. If G has adjacency matrix A = (aij), then the adjacency matrix of G∗ is

obtained from A by:

i. Adding row u to row v,

ii. Adding column u to column v,

iii. Subtracting 2auv from the new (v, v)-entry,

iv. Deleting row u and column u.

Remark. The notation G∗ is somewhat vague, since the contraction of course depends

on u and v. As such, notation such as G∗
uv may seem more suitable. However, the use

of G∗ is standard notation, in part because it is always clear what is being contracted,

and in part because G∗
uv is rather clunky.

Example 4.3.7. Here we look at a straightforward Z-weighted digraph G and the

resulting Z-weighted digraphs that occur from examples of deletion and contraction. For
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sake of simplicity, within the Figure, we do not label the vertices u and v, but these

should be clear from context. Furthermore, our ‘signed multiedge’ in this case is in fact

just “an edge” (that is, a positively signed multiedge with weight 1).

OO3 �� 2 OO3 �� 2 �� 2
�� 5

// // // //

G G− [uv] G− u G∗

Figure 4.5: A look at G− [uv], G− u and G∗ for a straightforward G.

We can now turn to stating, and proving, the generalisation of the deletion-contraction

theorem from Rowlinson:

Theorem 4.3.8 (Compare Rowlinson [33, Theorem 1.3]). Let G be a Z-weighted digraph

with at least three vertices for which there is a signed multiedge between (distinct) vertices

u and v, and let c ∈ Z be the weight of this multiedge. Writing χH = χH(x) for the

characteristic polynomial of any given digraph H, we have:

χG = χ
G−[uv] + cχG∗ + c(x− c)χG−u−v − cχG−u − cχG−v . (4.31)

Proof. We follow the proof from Rowlinson, commenting on the tiny differences needed

for the generalisation.

We may as well assume that u = 1 and v = 2. Then the adjacency matrix (aij) of G

has the shape 
a c r

c b s

p q A

 .

(In the multigraph setting, c > 0, p = rT , q = sT , and A is symmetric. The only

symmetry we require in this generalisation is that a12 = a21 = c.) The adjacency
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matrices of G− [uv], G− u, G− v, G− u− v, and G∗ are then:


a 0 r

0 b s

p q A

 ,

b s

q A

 ,

a r

p A

 ,

(
A

)
;

a+ b r+ s

p+ q A

 .

G− [uv] G− u G− v G− u− v G∗

Using the fact that the determinant is a linear function of any row or column, and

that swapping rows or columns changes the sign, we have:

χG(x) =

∣∣∣∣∣∣∣∣∣∣
x− a −c −r

−c x− b −s

−p −q xI −A

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
x− a 0 −r

−c x− b −s

−p −q xI −A

∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣
0 −c 0

−c x− b −s

−p −q xI −A

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
x− a 0 −r

0 x− b −s

−p −q xI −A

∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣
x− a 0 −r

−c 0 0

−p −q xI −A

∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣
0 −c 0

−c x− b −s

−p −q xI −A

∣∣∣∣∣∣∣∣∣∣
= χ

G−[uv] + c

∣∣∣∣∣∣∣∣∣∣
1 0 0

x− a 0 −r

−p −q xI −A

∣∣∣∣∣∣∣∣∣∣
+ c

∣∣∣∣∣∣∣∣∣∣
1 0 0

x− b −c −s

−q −p xI −A

∣∣∣∣∣∣∣∣∣∣
= χ

G−[uv] + c

∣∣∣∣∣∣∣
0 −r

−q xI −A

∣∣∣∣∣∣∣+ c

∣∣∣∣∣∣∣
0 −s

−p xI −A

∣∣∣∣∣∣∣+ c

∣∣∣∣∣∣∣
−c 0

−p xI −A

∣∣∣∣∣∣∣
= χ

G−[uv] − c2χG−u−v + c

∣∣∣∣∣∣∣
0 −r

−q xI −A

∣∣∣∣∣∣∣+ c

∣∣∣∣∣∣∣
0 −s

−p xI −A

∣∣∣∣∣∣∣ . (4.32)
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On the other hand,

χG∗(x) =

∣∣∣∣∣∣∣
x− (a+ b) −r− s

−p− q xI −A

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
x− (a+ b) 0

−p− q xI −A

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣

0 −r

−p− q xI −A

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣

0 −s

−p− q xI −A

∣∣∣∣∣∣∣
= (x− a− b)χG−u−v

+

∣∣∣∣∣∣∣
x− a −r

−p xI −A

∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣
x− a 0

−p xI −A

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
0 −s

−p xI −A

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
x− b −s

−q xI −A

∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣
x− b 0

−q xI −A

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
0 −r

−q xI −A

∣∣∣∣∣∣∣
= (x− a− b)χG−u−v + χG−v − (x− a)χG−u−v + χG−u − (x− b)χG−u−v

+

∣∣∣∣∣∣∣
0 −r

−q xI −A

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
0 −s

−p xI −A

∣∣∣∣∣∣∣
= χG−u + χG−v − xχG−u−v +

∣∣∣∣∣∣∣
0 −r

−q xI −A

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
0 −s

−p xI −A

∣∣∣∣∣∣∣ . (4.33)

Multiplying (4.33) by c and then subtracting from (4.32) gives the result.

4.3.2 Adding to Divide

For the next ingredient we need to prove Theorem 4.3.1, we need to define a modification

to a digraph G that has distinct vertices u and v for which there are no signed arcs in

either direction between u and v:

Definition 4.3.9. Let G be a digraph, and u and v be vertices of G for which there are

no signed arcs in either direction between u and v. For m ≥ 2, we denote by G(m) the

digraph obtained by adding a positive edge between u and v, and then subdividing this

edge with m vertices. Thus, G(m) has m more vertices than G.

The next result describes the shape of the reciprocal polynomial of G(m). This result

will make reference to digraphs Gi,j ; those which have had two neutrally charged pendant
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paths attached to them. As such, it may help to see an example:

Example 4.3.10. The following is a comparison between G(m) and Gi,j, for the same

digraph G and distinguished vertices u and v:

+
−1

1

1 0

u v

G

+
−1

1

1 0

u v

G(m)

m

+
−1

1

1 0

u v

Gi,j

(i− 1) (j − 1)

.

Lemma 4.3.11. Let G be a digraph with two distinguished neutral vertices u and v that

have no signed arc between them in either direction.

Let R(m) = R(m)(z) and Ri,j = Ri,j(z) be the reciprocal polynomials of G(m) and

Gi,j respectively. Then, for m ≥ 2, we have:

(z2 − 1)R(m) = zm−2(z2 − 1)R(2)

+ (zm−2 − 1)(zm + 1)R11

− z2(zm−2 − 1)(zm−2 + 1)(R10 +R01)

+ z4(zm−2 − 1)(zm−4 + 1)R00 . (4.34)

Proof. Let v1 be the vertex on our subdivided edge that is adjacent to u, and let v2 be

that which is adjacent to v1. We shall apply the deletion-contraction formula (4.31) for

the digraph G(m) with the edge between v1 and v2:

χG(m)
(x) = χG1,m−1(x) + χG(m−1)

(x) + (x− 1)χG0,m−2(x)− χG0,m−1(x)− χG1,m−2(x) .

(4.35)

To find the reciprocal polynomial, we replace x by z + 1/z and multiply by zm,

noting that G1,m−1 has the same number of vertices as G(m), G0,m−2 has two vertices

fewer, and all the other digraphs whose characteristic polynomial appears on the right

in (4.35) have one fewer vertex:

R(m) = R1,m−1 + zR(m−1) + z(z2 − z + 1)R0,m−2 − zR0,m−1 − zR1,m−2 . (4.36)
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Now we use (3.3) to write each R0,j in terms of R0,0 and R0,1 and each R1,j in terms of

R1,0 and R1,1, simplifying by multiplying by (z2 − 1):

(z2 − 1)R(m) = z(z2 − 1)R(m−1)

+ (z − 1)(z2m−3 + 1)R1,1

− z2(z − 1)(z2m−5 + 1)(R1,0 +R0,1)

+ z4(z − 1)(z2m−7 + 1)R0,0 . (4.37)

Now we claim that for 0 ≤ t ≤ m− 2 we have:

(z2 − 1)R(m) = zt(z2 − 1)R(m−t)

+ (zt − 1)(z2m−2−t + 1)R1,1

− z2(zt − 1)(z2m−4−t + 1)(R1,0 +R0,1)

+ z4(zt − 1)(z2m−6−t + 1)R0,0 . (4.38)

This is trivial for t = 0, and for t = 1 it is precisely (4.37). If (4.38) holds for some

t < m − 2, then applying (4.37) (with m replaced by m − t) to the right hand side

of (4.38) gives (after some manipulation) (4.38) for t + 1. Inductively, our claim is

established.

Putting t = m− 2 in (4.38) gives (4.34), as is required.

To further aid understanding of this proof, it may help to see explicit formulas for

R0,j and R1,j . We state these here, using (4.2), as to not disrupt the flow and clarity of

the proof:

(z2 − 1)R0,j = (z2j − 1)R0,1 + (z2j − z2)R0,0 ,

(z2 − 1)R1,j = (z2j − 1)R1,1 + (z2j − z2)R1,0 .

Upon a first viewing, it may seem like this only applies to subdivisions of positive

edges. Indeed, G(m) has only been defined for positive edges, and we have not given any
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alternative. However, we are fortunate in that we do not need to make any alterations if

we wish to consider subdivisions of negative edges.

For the analogue of Lemma 4.3.11 when we subdivide a negative edge, we note that

Theorem 4.3.8 still applies to give (4.36) unchanged. Then, having noted that (3.3)

still holds regardless of signs of edges on any pendant paths, we get all the subsequent

formulas of Lemma 4.3.11 too. Of course the analogue of R(2) for the subdivision of a

negative edge may be different from that for the subdivision of a positive edge.

4.3.3 Proof

We now have everything we need to prove the main Theorem of this chapter.

Proof of Theorem 4.3.1. We proceed by induction on the number, r, of subdivided

signed edges: the case r = 0 being trivial.

Inductively, if we subdivide r − 1 chosen signed edges of any digraph K, adding ti

new vertices to the i-th chosen signed edge to produce K[t1,···,tr−1], we have

z2(r−1)(z2 − 1)RK[t1,···,tr−1]
= QK[t1,···,tr−1]

(z, zt1 , · · · , ztr−1) ,

for some polynomial QK[t1,···,tr−1]
(z) ∈ Z[z0, z1, · · · , zr−1], depending on K and the chosen

signed edges. In particular, if we subdivide the first r− 1 chosen signed edges of K, and

then apply Lemma 4.3.11 to the final signed edge, each reciprocal polynomial on the right

of (4.34) has this form for various choices of K. Multiplying (4.34) by z2r(z2 − 1)r−1,

we deduce that z2r(z2 − 1)rRG[t1,···,tr ]
has the desired shape.

4.4 Bridges Between Digraphs

Our current results in this chapter have allowed us to grow digraphs in very simple

settings. In effect, our results allow us to either attach pendant paths (with some sort

of small decoration at the end), or to grow some form of internal path. Of course, in

the context of finding digraphs with small Mahler measures, these are perhaps the most

sensible things to consider when growing digraphs.
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However, as noted in Section 4.2.4, when we were attaching pendant paths and snake

tongues to digraphs, we were actually doing special situations of something more general.

We were attaching a path of m vertices, and fixing it so that the final vertex of this path

was part of some, very small, cyclotomic digraph. So, we could view this as taking two

digraphs, and then connecting them together with a path.

4.4.1 Bridges Between Digraphs: A Justification

We currently have a good collection of ways to grow our digraphs. Before we move to

running experiments with these ideas, however, it is worth asking if there are any other

ideas we should be considering. One such idea, inspired by the revelation that we are

connecting digraphs with long paths, is as follows: take a digraph G and attach k pendant

paths, of length m1, · · · ,mk respectively, to a list of k (not necessarily distinct) vertices

v1, · · · , vk. At the end of these pendant paths, attach further digraphs H1, · · · , Hk, and

calculate the Mahler measure of the resulting new digraph. It may help to see a rough

visualisation of this idea:

G H1Hk

Hi

v1vk

vi

(m1 − 1)(mk − 1)

(mi − 1) . .
.

.

..
.

.

.

Upon first viewing, this idea may seem somewhat brash. Indeed, the idea of growing

digraphs is to take a digraph G which is not cyclotomic, and obtain a new digraph which

is combinatorially close to being cyclotomic, in hope of getting a small Mahler measure.

This certainly seems difficult to achieve under this idea. However, if we look at this idea

in a more precise situation, a potential use comes from this.

Instead of looking at the general case, we look at the case where k = 2 (and in turn,

begin to mimic somewhat the ideas we have already seen). For convenience, we label the
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newly attached digraphs as HL and HR, and say that the vertices within these digraphs

that are attached to the pendant paths are labelled u1 and u2 respectively. This gives

us the following:

G HRHL v2v1
(m2 − 1)(m1 − 1)

u2u1
.

Next, consider a situation where the original digraph G has a path which exists

between v1 and v2 (say of length n vertices). Since we choose our G, this is a valid

consideration to make. Furthermore, assume that HL and HR each have paths of a

“long” length which start at u1 and u2 respectively (say of lengths pℓ and pr vertices

respectively). In terms of a visualisation, this gives us:

v2v1
(m2 − 1)(m1 − 1)

u2u1
n

G

(pℓ − 2)

HL

(pr − 2)

HR

.

Now, we can view this new digraph as a long path, on pℓ + m1 + n + m2 + pr

vertices, that has been nudged in some way with the additions of the remain content

of G, HL and HR. If we have our original digraph G, and attached digraphs HL and

HR, have a total number of vertices which is comparatively significantly smaller than

pℓ+m1+n+m2+pr, and say choose HL and HR to themselves be cyclotomic, then the

resulting digraph can be thought to be combinatorially close to being cyclotomic. From

here, we can then employ our heuristic hope that a digraph which is combinatorially

close to being cyclotomic will have a Mahler measure close to being 1, and in turn be

small.

This idea is perhaps not as intuitive as attaching decorated pendant paths to our

original digraph, but it does at least seem that there is some potential for the idea to

give fruitful results. We now need to mirror our earlier results and see if we can find the

general shape of the reciprocal polynomials of these digraphs.
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4.4.2 Bridges and Simple Graphs

We approach this idea in a similar way to how we approached attaching decorated

pendant paths. That is to say, we first look at similar situations involving simple graphs,

and see if, and how, we can generalise those results.

Cvetković et al. [10] have some results for simple graphs which are relevant to us.

We first fix some notation and definitions, and then move to giving these results.

Definition 4.4.1. Let G and H be (simple) graphs, and u and v be vertices of G and

H respectively.

The coalescence of G and H, denoted by G ·H, is the graph obtained by identifying

the vertex u from G and the vertex v from H.

Remark. G ·H depends on the choice of u and v, however these are not included in

the notation to avoid over-cluttering.

Definition 4.4.2. Let G and H be (simple) graphs, and u and v be vertices of G and

H respectively.

The bridge of G and H, denoted by GuvH, is the graph obtained by adding an edge

between the vertex u from G and the vertex v from H.

u = v

G H

G ·H

u v

GuvH

G H

Figure 4.6: A visualisation of G ·H and GuvH.

We wish to understand the shape of the reciprocal polynomial of these new (simple)

graphs. These are covered by Cvetković et al.; we state the results and give the

corresponding proofs, so that we may modify them to get results for our digraphs.

Proposition 4.4.3 (Cvetković et al. [10], Theorem 2.2.3). For any simple graphs G
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and H, we have:

χG·H(x) = χG(x)χH−v(x) + χG−u(x)χH(x)− xχG−u(x)χH−v(x) . (4.39)

Proof. Let the adjacency matrices of G and H be

A′ r

r⊤ 0

 and

0 s⊤

s B′


respectively, for some matrices A′, B′ and vectors r, s. Then, the adjacency matrix of

G ·H is: 
A′ r O

r⊤ 0 s⊤

O s B′

 ,

where each O is a zero matrix of the necessary size.

This now gives us the following:

χG·H(x) =

∣∣∣∣∣∣∣∣
xI −A′ −r O

−r⊤ x −s⊤

O −s xI −B′

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
xI −A′ −r O

−r⊤ x −s⊤

O 0 xI −B′

∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣
xI −A′ 0 O

−r⊤ x −s⊤

O −s xI −B′

∣∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣
xI −A′ 0 O

−r⊤ x −s⊤

O 0 xI −B′

∣∣∣∣∣∣∣∣ .

Now consider

∣∣∣∣∣∣∣∣∣∣
xI −A′ −r O

−r⊤ x −s⊤

O 0 xI −B′

∣∣∣∣∣∣∣∣∣∣
. In the sub-determinant

∣∣∣∣∣∣∣
x −s⊤

0 xI −B′

∣∣∣∣∣∣∣, we

require a non-zero contribution from every row. To achieve this, we clearly need a

contribution from every from of the matrix xI −B′, the adjacency matrix of the graph

H with the vertex v removed. This gives a contribution of χH−v(x) to the determinant.

Equally, we have the sub-determinant

∣∣∣∣∣∣∣
xI −A′ −r

−r⊤ x

∣∣∣∣∣∣∣, which simply contributes χG(x).

Multiplying these two contributions together we get χG(x)χH−v(x), which is the first
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part of the result.

The remaining two parts of the result follow similarly from the remaining two

determinants.

Before moving to our next result, we make a comment about notation that we will

use going forward. If we wish to write down the characteristic polynomial of a digraph

G which has had a pendant path with m vertices attached, we use the notation χGm .

This is a more formal and precise (and unfortunately more dense) version of the notation

which was first introduced in Lemma 3.3.2 (where this was written as χm).

The reason for introducing this notation now is because we are now working with

more than one original digraph. Previously, writing χm would cause no issue, as it would

be clear which digraph we were attaching the pendant path to. Now, ambiguity could

arise from such a notation, and so we will use this more formal notation here.

Proposition 4.4.4 (Cvetković et al. [10], Theorem 2.2.4). For simple graphs G and H,

we have:

χGuvH(x) = χG(x)χH(x)− χG−u(x)χH−v(x) . (4.40)

Proof. We first note that GuvH = G1 ·H. That is to say, it is the coalescence of G with a

pendant path of one vertex attached to the vertex u, and H, where we identify the vertex

of the end of the pendant with the vertex v in H. Therefore, χGuvH(x) = χG1·H(x).

From here, we use (4.39) to obtain:

χG1·H(x) = χG1(x)χH−v(x) + χG(x)χH(x)− xχG(x)χH−v(x) . (4.41)

We note that we are already have a formula to simplify χG1(x); we set m = 1 in (3.4),

which was seen in the proof of Lemma 3.3.2. This gives us:

χG1·H(x) =
(
xχG(x)− χG−u(x)

)
χH(x) + χG(x)χH(x)− xχG(x)χH−v(x)

= χG(x)χH(x)− χG−u(x)χH−v(x) ,

as required.

This result only applies to situations where a single edge joins two graphs together.
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However, it is easy to extend this result to a longer ‘bridge’ between the graphs. To

state this result, we first have to introduce some further, unfortunately messy, notation:

Definition 4.4.5. Let G and H be (simple) graphs, and u and v be vertices of G and

H respectively.

The n-bridge of G and H, denoted by Gn
uvH, is the graph obtained by adding a path

of n vertices (and so n+ 1 edges) between the vertex u from G and the vertex v from H.

Remark. The bridge of G and H can be thought of as the 0-bridge of G and H.

Remark. We can view the n-bridge as a coalescence of two graphs: Gn
uvH = Gn ·H

(where, again, Gn is the graph G with a pendant path of n vertices attached to the

vertex u).

Corollary 4.4.5.1. For simple graphs G and H, we have:

χGn
uvH(x) = χGn(x)χH−v(x) + χGn−1(x)χH(x)− xχGn−1(x)χH−v(x) . (4.42)

Proof. The result follows in an analogous fashion to Theorem 4.4.4.

4.4.3 Bridges and Digraphs

Our aim in this Section is to extend the results of Cvetković et al. to digraphs. In

particular, if we are able to extend the result of coalescence to digraphs, we are then

immediately in a position to extend their result of a simple graph with a bridge to

digraphs, since we can define the n-bridge of two digraphs in terms of coalescence.

Our next step would be to understand the shape of the reciprocal polynomial of

these newly formed digraphs; especially that of the n-bridge of two digraphs.

From here, this puts us in a position to tackle our goal. We can think of the n-bridge

of two digraphs as taking a digraph, and then attaching a pendant path to it, with a

second digraph at the end of the pendant path. If we are able to extend the result to

adding a second digraph, we then have the reciprocal polynomial of the digraph we want,

and could then look to use this in our experiments.

Fortunately, it is quite straightforward to extend the result of coalescence to digraphs,

provided our set-up is correct:
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Lemma 4.4.6. For any digraphs G and H which share at least one common charged

vertex, we have that:

χG·H(x) = χG(x)χH−v(x) + χG−u(x)χH(x)− xχG−u(x)χH−v(x) ,

where the identified vertices u in G and v in H have the same charge.

Proof. In this case, the adjacency matrix of G ·H is:


A′ r O

r̂⊤ c ŝ⊤

O s B′

 ,

for some vectors r, s, r̂ and ŝ, and where c is the corresponding value for the charge of

the identified vertex u = v.

The result follows from here, as in Theorem 4.4.3, albeit with minor differences to

the adjacency matrices.

It should not come as surprise that the coalescence of two digraphs can be found in

this way as well. And indeed, it should not come as a surprise that we are not able to

find the coalescence of two digraphs which do not share a common charged vertex in our

case.

A consequence of this is that we are now able to extend the results of Theorem 4.4.4

and Corollary 4.4.5.1 to digraphs. We simply apply our knowledge from Lemma 4.4.6

and ensure we have suitable digraphs.

Lemma 4.4.7. For digraphs G and H that each have at least one neutral vertex, we

have:

χGn
uvH(x) = χGn(x)χH−v(x) + χGn−1(x)χH(x)− xχGn−1(x)χH−v(x) , (4.43)

where the vertices u and v are neutrally charged.

Proof. The result also follows in an analogous fashion to Theorem 4.4.4.
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We are now in a position to find the general shape of the reciprocal polynomial of

the n-bridge of two digraphs.

Proposition 4.4.8. For digraphs G and H, neutral vertices u in G and v in H, and

n ≥ 1, the reciprocal polynomial of Gn
uvH satisfies the following:

(z2 − 1)RGn
uvH(z) = L1(z)B(z) + L0(z)B

∗(z) , (4.44)

where L1 and L0 are Laurent polynomials and B is some monic integer polynomial that

depends on G but not on u, v or n.

Proof. For convenience and ease of notation, let G = Gn
uvH. So, we can rewrite (4.43)

as:

χG(x) = χGn(x)χH−v(x) + χGn−1(x)χH(x)− xχGn−1(x)χH−v(x) . (4.45)

If we say that G has g vertices andH has h vertices, we see that G has g+h+n vertices.

To find RG , we take reciprocalisation of χG ; that is, we calculate zdeg GχG(z + 1/z):

RG(z) = zRGn(z)RH−v(z) + zRGn−1(z)RH(z)− (z + 1/z)z2RGn−1(z)RH−v(z) .

We rearrange this into a slightly more convenient form:

RG(z) =
(
zRGn(z)− z(z2 + 1)RGn−1(z)

)
RH−v(z) + zRGn−1(z)RH(z) . (4.46)

We now recall (3.3), which gives us the shape of the reciprocal polynomial of a

digraph with a pendant path (with m vertices) attached:

(z2 − 1)Rm(z) = z2mB(z)−B∗(z) ,

where B is some monic integer polynomial that depends on G, but not m or the vertex

the pendant path is adjoined to.

So, by multiplying (4.46) by (z2 − 1), we can use (3.3) to simplify the shape of the

reciprocal polynomial further. In doing this, we get:
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(z2 − 1)RG(z) =
(
z(z2 − 1)RGn(z)− z(z2 + 1)(z2 − 1)RGn−1(z)

)
RH−v(z)

+ z(z2 − 1)RGn−1(z)RH(z)

=

(
z
(
z2nB(z)−B∗(z)

)
− z(z2 + 1)

(
z2(n−1)B(z)−B∗(z)

))
RH−v(z)

+ z
(
z2(n−1)B(z)−B∗(z)

)
RH(z)

=
(
z2n−1RH(z)− z2n−1RH−v(z)

)
︸ ︷︷ ︸

=L1(z)

B(z)

+
(
z3RH−v(z)− zRH(z)

)
︸ ︷︷ ︸

=L0(z)

B∗(z) .

We note that the monic polynomial B which comes from simplifying RGn and RGn−1 is

indeed the same. In fact, we know from McKee and Smyth [22] – as noted in the proof

of Lemma 3.3.2 – that B(z) = RG1(z)−RG0(z).

This gives us the desired shape of the reciprocal polynomial.

4.4.4 Key Result for Bridges

This now puts us in a position to state and prove our main result related to these bridged

digraphs.

Theorem 4.4.9. Let G be a digraph with g ≥ 1 vertices and (v1, v2) be a list of two

(not necessarily distinct) vertices of G. Construct a new digraph from G, called G, in

the following fashion:

• Attach an uncharged pendant path, with m1 vertices, such that the final vertex –

denoted by u1 – is part of a new digraph HL, with ℓ ≥ 2 vertices,

• Attach a second uncharged pendant path, with m2 vertices, such that the final

vertex – denoted by u2 – is part of a new digraph HR, with r ≥ 2 vertices,

So, G will have g + l + r +m1 +m2 − 2 vertices. Writing R# to represent the reciprocal

polynomial R#(z) for a given digraph, we then have that the reciprocal polynomial of G

is:



4.4. Bridges Between Digraphs 158

(z2 − 1)
2
RG =

z2m1+2m2−4 (RHL
RHR

−RHL
RHR−u2 −RHL−u1RHR

+RHL−u1RHR−u2)B1,1

−z2m1−2(RHL
RHR

− z2RHL
RHR−u2 −RHL−u1RHR

+ z2RHL−u1RHR−u2)B1,0

−z2m2−2(RHL
RHR

−RHL
RHR−u2 − z2RHL−u1RHR

+ z2RHL−u1RHR−u2)B0,1

+ (RHL
RHR

− z2RHL
RHR−u2 − z2RHL−u1RHR

+ z4RHL−u1RHR−u2)B0,0 ,

(4.47)

where:

B1,1(z) = RG1,1(z)− RG1,0(z)− RG0,1(z) + RG0,0(z) ,

B1,0(z) = RG1,1(z)− z2RG1,0(z)− RG0,1(z) + z2RG0,0(z) ,

B0,1(z) = RG1,1(z)− RG1,0(z)− z2RG0,1(z) + z2RG0,0(z) ;

B0,0(z) = RG1,1(z)− z2RG1,0(z)− z2RG0,1(z) + z4RG0,0(z) .

(4.48)

G HRHL v2v1
(m2 − 1)(m1 − 1)

u2u1

Figure 4.7: A visualisation of G.

Remark. We note that the formulas in (4.48) are the same as those in (4.3). These

have been restated under our more formal notation for absolute clarity.

Proof. Let H = (HL)
m1
u vG. We can also think of this as H = HL ·Gm1 .

Then, G = Hm2
v2 u2

HR. Again, we can view this as G = Hm2 ·HR. Applying Lemma

4.4.6 to this, we get:
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χG = χHm2
χHR−u2︸ ︷︷ ︸
(∗)

+χHm2−1
χHR︸ ︷︷ ︸

(∗∗)

−xχHm2−1
χHR−u2︸ ︷︷ ︸

(∗∗∗)

. (4.49)

We expand each part of (4.49) separately. Firstly, we expand (∗), by applying Lemma

4.4.6 to Hm2 = HL ·Gm1,m2 :

χHm2
χHR−u2 =

(
χGm1,m2

χHL−u1 + χGm1−1,m2
χHL

− xχGm1−1,m2
χHL−u1

)
χHR−u2 .

(4.50)

Next, we expand (∗∗) by applying Lemma 4.4.6 to Hm2−1:

χHm2−1
χHR

=
(
χGm1,m2−1

χHL−u1 + χGm1−1,m2−1
χHL

− xχGm1−1,m2−1
χHL−u1

)
χHR

.

(4.51)

Finally, we expand (∗ ∗ ∗) by applying Lemma 4.4.6 to Hm2−1:

χHm2−1
χHR−u2 =(
χGm1,m2−1

χHL−u1 + χGm1−1,m2−1
χHL

− xχGm1−1,m2−1
χHL−u1

)
χHR−u2 .

(4.52)

Combining (4.50), (4.51) and (4.52) back together into (4.49) and rearranging gives

us:

χG = χGm1,m2
χHL−u1

χHR−u2

+ χGm1−1,m2
(χHL

χHR−u2 − xχHL−u1
χHR−u2)

+ χGm1,m2−1 (χHL−u1
χHR

− xχHL−u1
χHR−u2)

+ χGm1−1,m2−1

(
χHL

χHR
− xχHL−u1

χHR
− xχHL

χHR−u2 + x2χHL−u1
χHR−u2

)
.

(4.53)

We now find the reciprocal polynomial, which we will write as RG(z) = RG .



4.4. Bridges Between Digraphs 160

RG = RGm1,m2
RHL−u1RHR−u2

+RGm1−1,m2
(RHL

RHR−u2 − z(z + 1/z)RHL−u1RHR−u2)

+RGm1,m2−1 (RHL−u1RHR
− z(z + 1/z)RHL−u1RHR−u2)

+RGm1−1,m2−1(RHL
RHR

− z(z + 1/z)RHL−u1RHR

− z(z + 1/z)RHL
RHR−u2 + z(z + 1/z)2RHL−u1RHR−u2) .

(4.54)

At this point, we now wish to exploit (4.2) (as presented in Lemma 4.2.1). Thus,

we need to multiply (4.54) by (z2 − 1)
2. From here, we can then expand each of the

(z2 − 1)
2
RGi,j terms into a linear combination of R1,1, R1,0, R0,1 and R0,0.

Once we have done this, we can collect each of the R1,1, R1,0, R0,1 and R0,0 terms

together. This gives us an equation of the form:

(z2 − 1)
2
RG(z) = α1(z)R1,1(z) + α2(z)R1,0(z) + α3(z)R0,1(z) + α4(z)R0,0(z) .

We look at each of these αi individually, for clarity:

α1(z) = (z2m1−2 − 1)(z2m2−2 − 1)RHL
RHR

− (z2m1−2 − 1)(z2m2−2 − z2)RHL
RHR−u2

− (z2m1−2 − z2)(z2m2−2 − 1)RHL−u1RHR

+ (z2m1−2 − z2)(z2m2−2 − z2)RHL−u1RHR−u2 ,

(4.55)

α2(z) = −(z2m1−2 − 1)(z2m2−2 − z2)RHL
RHR

+ (z2m1−2 − 1)(z2m2−2 − z4)RHL
RHR−u2

+ (z2m1−2 − z2)(z2m2−2 − z2)RHL−u1RHR

− (z2m1−2 − z2)(z2m2−2 − z4)RHL−u1RHR−u2 ,

(4.56)
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α3(z) = −(z2m1−2 − z2)(z2m2−2 − 1)RHL
RHR

+ (z2m1−2 − z2)(z2m2−2 − z2)RHL
RHR−u2

+ (z2m1−2 − z4)(z2m2−2 − 1)RHL−u1RHR

− (z2m1−2 − z4)(z2m2−2 − z2)RHL−u1RHR−u2 ,

(4.57)

α4(z) = (z2m1−2 − z2)(z2m2−2 − z2)RHL
RHR

− (z2m1−2 − z2)(z2m2−2 − z4)RHL
RHR−u2

− (z2m1−2 − z4)(z2m2−2 − z2)RHL−u1RHR

+ (z2m1−2 − z4)(z2m2−2 − z4)RHL−u1RHR−u2 .

(4.58)

We can now combine (4.55)–(4.58) and apply (4.3) to get:

(z2 − 1)
2
RG =

(
z2m1+2m2−4B1,1 − z2m1−2B1,0 − z2m2−2B0,1 +B0,0

)
RHL

RHR

−
(
z2m1+2m2−4B1,1 − z2m1B1,0 − z2m2−2B0,1 + z2B0,0

)
RHL

RHR−u2

−
(
z2m1+2m2−4B1,1 − z2m1−2B1,0 − z2m2B0,1 + z2B0,0

)
RHL−u1RHR

−
(
z2m1+2m2−4B1,1 − z2m1B1,0 − z2m2B0,1 + z4B0,0

)
RHL−u1RHR−u2 .

(4.59)

We can rearrange this to get (4.47), our desired result.

Remark. An alternative way to write (4.47) would be as:

(z2 − 1)
2
RG = z2m1+2m2−4B1,1C1,1 − z2m1−2B1,0C0,1 − z2m2−2B0,1C1,0 +B0,0C0,0 ,

(4.60)

where the Bi,j are as in (4.48) and

C1,1 = RHL
RHR

− RHL
RHR−y − RHL−uRHR

+ RHL−uRHR−y ,

C0,1 = RHL
RHR

− z2RHL
RHR−y − RHL−uRHR

+ z2RHL−uRHR−y ,

C1,0 = RHL
RHR

− RHL
RHR−y − z2RHL−uRHR

+ z2RHL−uRHR−y ;

C0,0 = RHL
RHR

− z2RHL
RHR−y − z2RHL−uRHR

+ z4RHL−uRHR−y .

(4.61)
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4.4.5 A Bridge Too Far?

Now that we have the shape of the reciprocal polynomial, (4.47), of these bridged

digraphs, we can now include digraphs of these shape in our experiments. At least, in

theory we can.

There is an unfortunate issue with the shape of the reciprocal polynomial in (4.47):

it is very complicated. In computing this, we need to create a routine which handles a

lot of data. To summarize, the routine has to have the following features:

i. Allows us to input details of the starting digraph G, as well as choose suitable

vertices v and w,

ii. Can vary over different suitable digraphs HL and HR, and choose appropriate

vertices u and y,

iii. Calculate the reciprocal polynomials of eight different digraphs simultaneously,

iv. Is not too time consuming.

Parts ii and iv are large hurdles for us. We are limited with our ability to create

a routine which can run over suitable digraphs and choose appropriate vertices. To

overcome this, we could go for a watered-down version, where we as the user choose and

input details of specific HR and HL, but this is perhaps less practical.

Furthermore, if we were to do this, we still have the issue of time. We will address this

more in chapter 5, once we have outlined how our experiments work in detail. However,

in short, whilst creating a routine that can calculate these reciprocal polynomials in a

reasonable amount of time is achievable, we have to consider two further factors. The

first factor is the time taken to complete the rest of our experiment. The second factor

is the comparative time taken to calculate these polynomials compared to reciprocal

polynomials where we just attach pendant paths with some decoration at the end.

4.5 Consequences and Next Steps

This chapter has demonstrated an effective way of growing graphs, which can indeed be

applied to our digraphs. We have explored ways to increase the size (number of vertices)
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of our digraphs by growing a path of uncharged vertices, either internally (by means

of subdividing an edge) or externally (by means of attaching a pendant path). In the

latter scenario, we also have the option to attach a small decoration at the end of the

path. In each scenario, we know what the shape of the reciprocal polynomial will be.

We have also extended the idea even further, by means of attaching new digraphs at

the ends of pendant paths. Heuristically, this is a step removed from our original idea.

Furthermore, from a practical perspective, this idea is not one which seems worthwhile

to experiment with, However, we have at least been able to build a more comprehensive

theory around growing digraphs.

Now, we are in a position to experiment and attempt to find digraphs with small

Mahler measure. Again, we go back to our key idea: if a digraph is combinatorially close

to being cyclotomic, we hope that its Mahler measure will be close to being 1, and hence

small. We can obtain digraphs which are combinatorially close to being cyclotomic in

one of two ways. The first way is to take a cyclotomic digraph, and then ‘nudge’ it

(by making a small number of changes or additions), breaking its cyclotomic nature.

The second way is to take a non-cyclotomic digraph, and grow it – using the methods

outlined here – so the resulting digraph resembles, in a combinatorial sense, a digraph

which is close to being cyclotomic. In other words, it could be a cyclotomic digraph

which had been nudged.

In the next chapter, we formalise these ideas, including making decisions on which

cyclotomic digraphs we should nudge, and which non-cyclotomic digraphs make good

candidates to grow.



Chapter 5

Experiments and Results

In this chapter, we explain in detail the experiments we ran to attempt to find small

Mahler measures from digraphs, as well as the results thereafter. In fact, we have two key

focuses here: the first is digraphs with small Mahler measures, the second is associating

two-variable polynomials to certain digraphs, and then attempting to find small Mahler

measures of two-variable polynomials from families of digraphs. We will give details of

how this was achieved after looking at the single variable case.

As alluded to in Section 4.5, our experiments will require us to find good candidates

of digraphs to either ‘nudge’ or ‘grow’. So, before detailing our experiments, we first

find such good candidates.

The experiments described here have appeared in a less detailed format in Coyston

and McKee [9], with the final results also being included there.

5.1 Good Candidates

5.1.1 Nudged Paths

We know that the path Pn is cyclotomic and, in some sense, is perhaps the most

straightforward family of cyclotomic (di)graphs to consider. As such, these are ideal

candidates to first consider for our experiments.

We have mentioned previously our desire to ‘nudge’ digraphs, by which we mean,

making a small number of changes or additions to it. Before continuing, we formalise
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this concept a bit more:

Definition 5.1.1. A nudge to a digraph G is the following process:

• Choose a value n, much less than the number of vertices of G,

• Identify vertices v1, · · · , vn in G,

• Attach a new, possibly charged, vertex, say u, to these vertices, with some signed

arcs or edges.

The reasoning for calling this a nudge is somewhat intuitive: we are attaching one

new vertex to a digraph with a small number of arcs, compared to the size of the digraph.

By choosing n to be much less than the number of vertices, this gives us a certain level

of confidence that we are not changing the digraph too much, and in a combinatorial

sense, just nudging it to become something different.

Example. Figure 5.1 shows P30 nudged by attaching an uncharged vertex to three

vertices: the fifth, thirteenth and last. The new vertex u is attached by signed arcs

s1,1, · · · , s3,2, some of which may be 0, but not both si,1 and si,2 for any given i.

3 7 16

s1,1
s1,2 s2,1

s2,2

s3,1
s3,2

u

Figure 5.1: P30 after it has been nudged.

It is now worth refocusing: our aim with nudging digraphs is to help us find digraphs

with small Mahler measures. We know that we need to be looking at digraphs which

are not simple graphs too. That is to say, we need to be looking for digraphs which

have charged vertices and signed arcs or edges. As such, when we nudge Pn, we should

consider adding a charged vertex and, more importantly, signed arcs. Indeed, it would

be best if at least one one of the vertices vi was not joined to u by a signed edge,
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but only with a signed arc in one direction (so that the resulting adjacency matrix is

non-symmetric). For example, the following would be a sensible choice of nudge to P30

consider:

3 7 16

1
0

−1

1

.u

Now again, we reconsider our aim of nudging digraphs is to help us find digraphs

with small Mahler measures. When we nudge Pn, we want – in a combinatorial sense –

to keep it close to being cyclotomic, whilst ensuring it is no longer cyclotomic. Therefore,

it is sensible to attach the new vertex to as few of the existing vertices as possible. As

such, we restrict ourselves to nudging by attaching the new vertex to at most n = 2

vertices of the path.

Remark. The process of nudging can be applied broadly. Though restricting ourselves

to attaching a new vertex to at most two existing vertices when nudging a path is the

sensible choice here, this is not necessarily the optimal value of n for a general digraph.

Example 5.1.2. Consider the following family of digraphs, which we label as G++
t,2t+2:

+ +

+

(t− 1) (2t+ 1)

0
1

We note that we are calling this digraph G++
t,2t+2, but our pendant paths are listed as a

having t− 1 and 2t+ 1 vertices in our visual. This is because the labelling in the visual

shows the number of neutral vertices in our pendant path, and does not include the

endvertex. We choose to name our digraph in this way to ensure we are including the

decoration of our pendant path.

Then, for various values of t, we get digraphs which have small Mahler measures:
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t M(G++
t,2t+2)

2 1.24072642 · · ·

3 1.20261674 · · ·

4 1.17628081 · · ·

5 1.26911783 · · ·

6 1.27829231 · · ·

7 1.27410221 · · ·

8 1.26552733 · · ·

9 1.25555243 · · ·

10 1.24537290 · · ·

Table 5.1: Various values of t and the resulting Mahler measure of G++
t,2t+2.

Remark. In fact, as t → ∞, the value of M(G++
t,2t+2) will tend to a limit point. We

discuss this fact later. This also highlights the oscillating nature of Mahler measures of

digraphs we have grown, which we noted in Section 3.4.

This example exhibits just why the path is a good candidate to nudge. Figure 5.2

gives us a look at a more general version of the suitably nudged path:

∗

ℓ m r

ℓ1
r1 ℓ2 r2

Figure 5.2: A good general example of a nudged path.

We see that we have a path on ℓ +m + r + 4 vertices, which is being nudged by

attaching the new vertex to the (ℓ+2)-th vertex and the (ℓ+m+3)-th vertex, with some

signed arcs ℓ1, r1, ℓ2 and r2. This is a particularly fruitful-looking nudge to consider,

and forms the heart of our experiments.
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5.1.2 Core Digraphs and Decorations

Nudging is primarily useful for us when we have a cyclotomic digraph. We are taking

a digraph with Mahler measure 1 and breaking its combinatorial cyclotomic nature

slightly, in the hope of getting a new digraph which has small Mahler measure. Whilst

this looks fruitful (and, as we will shortly see, is indeed fruitful!), it does restrict us and

the number of experiments we could perform.

Therefore, we look to ‘reverse-engineer’ the process. So, instead of taking a cyclotomic

digraph and nudging it, find a good choice of digraph and attach a suitable cyclotomic

digraph (or digraphs) to it. If the attached cyclotomic digraphs are comparatively

significantly larger than our original, then we effectively end up with a new digraph

which is close to be cyclotomic.

Of course, the main problem which arises here is what is “good choice” of digraph,

and what are “suitable” cyclotomic digraphs to attach. We first tackle the former of

these problems before moving onto the latter, but fortunately, we already have a good

basis to build on to answer these.

Recall Figure 5.2, where we attached one vertex to two vertices of a path. If we set

ℓ = r = −1, we have the specific case of a nudged path, whereby we have attached the

vertex to the first and last vertices of a path, as seen in Figure 5.3.

∗

m

ℓ1
r1 ℓ2 r2

Figure 5.3: A nudged path, with a new vertex attached to both ends of the path.

Now, if instead of nudging the path by attaching one vertex, consider the situation

where we add two vertices, u1 and u2, joined by a negative edge, and attach u1 to

the first vertex of the path, and u2 to the last vertex of the path. This results in the

following new digraph, seen in Figure 5.4:
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∗ ∗

m

ℓ1 r1 ℓ2 r2

Figure 5.4: A nudged path with two new vertices.

This is a step away from our idea of nudging paths, in that we are adding more than

one new vertex. But at the same time, it is very much within the spirit of the idea.

Nudging makes a small number of changes to a digraph to give us a new digraph. So,

assuming that the path we are nudging has a large number of vertices, adding two new

vertices, and a maximum of six new signed arcs (treating an edge as two arcs) is still

making a small number of changes.

More aptly, this new digraph is still very close to being cyclotomic. To see this, we

need the following Proposition:

Proposition 5.1.3. Let G be the disjoint union of graphs G1, · · · , Gk. Then, the Mahler

measure of G is:

M(G) =

k∏
i=1

M(Gi) .

Proof. Let the adjacency matrix of G be A. Labelling the vertices of G appropriately,

we can write A in the following block diagonal form:

A =



A1 0

0 A2 0

0
. . . . . .
. . . Ak−1 0

0 Ak


,

where each Ai is the adjacency matrix of Gi. As A has this block diagonal form, our

result follows straightforwardly from here.
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An easy consequence of Proposition 5.1.3 is that the disjoint union of cyclotomic

graphs, and indeed disjoint union of cyclotomic digraphs, is itself cyclotomic. If we

return to Figure 5.4, we see that if we remove the arcs joining the new vertices to the

original path, we are left with (digraphs which are equivalent to) charged paths. Hence,

this would be the disjoint union of cyclotomic digraphs, meaning the digraph considered

in Figure 5.4 is combinatorially close to being cyclotomic.

This now gives us a good choice of digraph to reverse-engineer our nudging process.

If we take the digraphs shown in Figure 5.4 and attach pendant paths to the ends of the

original path, using the methods as described in Section 4.2, we get a resulting digraph

which is close to being cyclotomic (as seen in Figure 5.5). Furthermore, we have an

additional bonus in that we have a method to calculate its reciprocal polynomial (and

hence Mahler measure) already our disposal!

∗ ∗

ℓ m r

ℓ1 r1 ℓ2 r2

Figure 5.5: A new digraph worth experimenting with.

In fact, we can use similar methods to find many good choices of digraphs to

experiment with. Before stating a result which captures all of these good choices, we

attempt to firm up what exactly we mean by a “good choice”:

(Informal) Definition 5.1.4. We say a digraph is a good choice of digraph for

our reverse-engineered process if it is a digraph which is combinatorially close to being

cyclotomic. This itself is not well-defined, so we go with visual evidence here to decide is

a digraph is combinatorially close to being cyclotomic.

Remark. As the concept of “good choice” is not well-defined, we cannot properly

formalise our result about which digraphs are indeed good choices. As such, the following

statement is referred to as a “Heuristic Proposition”, as opposed to a Proposition.
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Heuristic Proposition 5.1.5. The digraphs CD1, CD2 and CD3, as showcased in

Figures 5.6 and 5.7, give us particularly good choices of digraph for our reverse-engineered

nudging process:

Cℓ Crn

m
ℓ1 r1 ℓ2 r2

CD1

Figure 5.6: The digraph CD1.

Cℓ Cr

m
ℓ1 r1 ℓ2 r2

u

d
Cℓ CrCm

m
ℓ1 r1 ℓ2 r2

u

d

CD2 CD3

Figure 5.7: The digraphs CD2 and CD3.

Owing to the lack of precision in the statement of Heuristic Proposition 5.1.5, we

cannot formally prove it. Furthermore, we note that not all combinations are good

choices, but most are. As such, we give a justification for why it is true, and make this

justification as formal as possible.

Justification of Heuristic Proposition 5.1.5. We look at each digraph on a case-by-case

basis after removing the signed arcs ℓ1, r1, ℓ2 and r2. Our aim is to show that, after

removing these arcs, each digraph in the resulting disjoint is cyclotomic in most (or all)

cases.

In each case, we have two paths, of which the first is an uncharged path on (m+ 2)

vertices, which we know is cyclotomic. So we look exclusively at the second path.

The case of CD1 is not difficult to tackle. The second path is a path on (n + 2)

vertices, where the ends are charged, and (n+1) negative edges. By Proposition 3.5.7, we

know that this second path is switch equivalent to PCℓCr
n , which we know is cyclotomic.
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The remaining two cases are not so trivial. The second path of CD2 has adjacency

matrix

cℓ u

d cr

. We find that, in most cases that the values of these take, the

eigenvalues of this matrix always lie in [−2, 2]. So, by Lemma 3.1.11, CD2 is cyclotomic

in most cases.

We can use a similar exhaustive approach to show the same for CD3, again noting

that some choice of values give us a non-cyclotomic digraph, but most cases do.

Remark. We can choose to omit the values which give us digraphs which are not “good

choices” in our experiments.

This now gives us a variety of good candidates to experiment with growing and

attaching cyclotomic digraphs to. We call these candidates core digraphs.

We have now answered the first of our two main problems we encountered prior to

experimenting; namely what is a “good choice” of digraph to start with. We now have

to tackle the second problem: what are “suitable” cyclotomic digraphs to attach to our

core digraphs?

This is, in fact, much easier to answer. In Section 4.2, we attached pendant paths

to some digraph, and the ends of these pendant paths had some form of decoration.

In particular, they had some (possibly neutral) charge, or had a “fork” from a snake

tongue at the end. All of these are cyclotomic digraphs, and so are suitable choices for

cyclotomic digraphs to attach.

Furthermore, as we saw in Section 4.4, attaching more general digraphs at the end

of our pendant paths creates significantly more complex results for the shape of the

reciprocal polynomial. As such, we cannot work with these reciprocal polynomials as

quickly as we would perhaps want to. We discuss the issues related to this in slightly

more detail in Section 5.4.

As such, whilst other cyclotomic digraphs may prove useful in theory, they are harder

to implement in practice. This gives us a short, but still useful, list of suitable cyclotomic

digraphs which are worth attaching to our digraphs.
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5.1.3 The Heart of the Experiments

We now give an outline of what we wish to achieve with our experiments of using

digraphs to find small Mahler measures. We do not detail how our experiments will work

– this is done in Section 5.2 – but rather overview what we have covered in a simple,

closed fashion.

The specific digraphs we will be looking at will be in the form of Figure 5.8, where:

• DL, DR are decorations in the form of one vertex of some possibly neutral charge,

or the snake tongue,

• CD is a core digraph (which includes the internal path with m vertices) as seen in

Heuristic Proposition 5.1.5.

DL DRℓ m r

CD

Figure 5.8: The general digraph experimented on.

Of course, within this general digraph are several different parameters. Some of these

parameters do only arise in certain choice of core digraphs, but we have:

• The number of vertices in our pendant paths, ℓ and r, which must be non-negative,

• The number of vertices in our main path of the core digraph, m, which must be

non-negative,

• The signs of our arcs within the core digraph, ℓ1, r1, ℓ2 and r2, which can take

values in {−1, 0, 1}, and cannot all be zero,

• The charges of our main vertices in our core digraph, Cℓ and Cr, which have

corresponding values cℓ and cr in {−1, 0, 1},
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• If our core digraph is CD1 (as seen in Figure 5.6), the number of vertices in our

negative path of the core digraph, n, which must be at least −1,

• If our core digraph is CD2 or CD3 (as seen in Figure 5.7), the signs of our arcs

within these core digraphs, u and d, which can take values in {−1, 0, 1},

• If our core digraph is CD3 (as seen in Figure 5.7), the charge of our additional

vertex, Cm, whose corresponding value is cm is in {−1, 0, 1}.

Remark. We note that in the case of CD1, we allow choices of n ≥ −1. In the case

n = −1, we identify the charged vertices Cℓ and Cr to be the same vertex.

Unsurprisingly, this means that our experiments for finding digraphs with small

Mahler measures are extremely involved. This is despite the fact we have already made

very careful choices to ensure we are looking at a smaller selection of digraphs which we

are hopeful will be fruitful. Our next step is to determine how to make our experiments

as optimal as possible. With so many parameters (some of which have no bound), we

need to ensure that our experiments run efficiently, know when to continue and when to

stop.

5.1.4 Reducing Choices

One way to make our experiments run as efficiently as possible is to ensure we are not

experimenting on digraphs which are equivalent. In particular, in Corollary 3.5.4.1 we

saw that digraphs which are switch equivalent share the same Mahler measure. As such,

if we have two core digraphs which are equivalent, it stands to reason that we do not

need to experiment on both of them.

We will not detail in great depth how to find all non-equivalent core digraphs, nor

will we give any sort of comprehensive lists. Instead, we will look at a specific example of

a certain family of core digraphs, and outline how we find all non-equivalent digraphs in

this case. The specific case we look at is the same digraph we saw in Figure 5.3, where

we nudged a path by attaching a charged vertex to the ends of the path. This is one of

the simplest core digraphs, and we show it again here for convenience:
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C

m

ℓ1
r1 ℓ2 r2

.

This is CD1, with n = −1, meaning that the charged vertices Cℓ and Cr are identified

as the same vertex.

If we fix m, we have 35 possible digraphs from our parameters (ℓ1, r1, ℓ2, r2 and c

all have three possible values). We can reduce the number of digraphs we consider

immediately by ignoring situations where ℓ1 = r1 = 0 and ℓ2 = r2 = 0, since we want to

attach the charged vertex to two vertices. It is straightforward to find digraphs which

are obviously equivalent. For example,

C

m

and

C

m

are equivalent, by switching at the charged vertex.

Table 5.2 showcases the values ℓ1, r1, ℓ2, r2 for all non-equivalent digraphs, with a

fixed charge C in this case. There are 13 different combinations of parameters here.

This means that there are a total of 13× 3 = 36 non-equivalent relevant digraphs in the

shape of Figure 5.3, which represents a not-insignificant decrease from our original 81.

In this case, there was a reasonably manageable number of unique digraphs. However,

to demonstrate the usefulness of this, it is better to look at one of our other core digraphs.

The core digraph CD2, again for a fixed m, has eight different parameters, and so 38

unique digraphs to consider (although this number can again be immediately reduced,

after we ignore combinations of cases when ℓ1 = r1 = 0, ℓ2 = r2 = 0 and u = d = 0, and

combinations which are not good choices). However, there are only 645 non-equivalent

relevant digraphs, which represents a significant decrease from our original number.
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ℓ1 r1 ℓ2 r2

−1 −1 −1 −1

−1 −1 −1 0

−1 −1 −1 1

−1 −1 0 1

−1 −1 1 1

−1 0 −1 0

−1 0 −1 1

−1 0 0 −1

−1 0 0 1

−1 0 1 −1

−1 0 1 0

−1 1 −1 1

−1 1 1 −1

Table 5.2: Values of ℓ1, r1, ℓ2, r2 for non-equivalent digraphs in Figure 5.3.

Using our knowledge of equivalence of digraphs, we have been able to reduce the

number of good candidates that we have to experiment with. However, we still have

a significant number of candidates, on top of the adding complexity of growing our

digraphs. In any case, we are now in the best possible position to move onto our

experiments, which we now outline.

5.2 Outline of Experiments

We now turn our attention to the exact nature of how our experiments were run. To

reiterate, our overall goal is to find digraphs with small Mahler measures. Due to

Theorem 4.2.14, we know what the general shape of the reciprocal polynomial is for the

general digraph we are experimenting on. As such, the key idea is to vary over different

values for each of our parameters, as outlined in Section 5.1.3.

However, before we approach the question of how far we should stretch our parameters,



5.2. Outline of Experiments 177

we need to know what exactly to do with good candidate polynomials once we have

them. This is because if we have a good candidate polynomial (that is to say, we have a

good choice of parameters in our digraph which give us a good reciprocal polynomial),

there is a good chance that digraphs with similar parameters will also be fruitful to

consider. Therefore, we need to determine a way to not only just find digraphs, but also

push our searches further for potentially good families of digraphs.

5.2.1 An Aside on Hyperplanes

Here we take a short, and somewhat technical, diversion and look a little into hyperplanes.

At first, this may seem like an obtuse diversion to take, especially in the context of what

we are trying to achieve with our experiments, but this will allow us to create and run

experiments which are as fruitful and optimal as possible.

Definition 5.2.1. A hyperplane is an affine subspace of Rn consisting of all vectors

x = (x1, · · · , xn) such that a1x1 + · · ·+ anxn = c, for some constant c and for scalars

a1, · · · , an, not all zero.

One way to develop a link between hyperplanes and Mahler measures comes from

the following result of Lawton:

Theorem 5.2.2 (Lawton, [16]). For n = (n1, · · · , nr) ∈ Zr, define

µ(n) = min
c=(c1,···,cr)∈Zr\{0},

c·n=0

max
1≤i≤r

|ci| . (5.1)

Then, for sequences ni = (ni,1, · · · , ni,r) ∈ Zr for which µ(ni) → ∞ as i→ ∞,

M(Q(zni,1 , · · · , zni,r)) →M(Q(z1, · · · , zr)) ,

as i→ ∞.

The link to hyperplanes might not be immediately obvious. Firstly, we take some

c = (c1 : c2 : · · · : cr) ∈ Pr−1(Q). Scaling c, we can suppose that all the ci are in Z, and

their greatest common divisor is 1. Then the height of c is defined to be the maximum
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of the |ci|. Such points c correspond precisely to hyperplanes through the origin in Qr,

with the hyperplane corresponding to c being the set of points x satisfying c · x = 0.

We define the height of the hyperplane to be the height of the corresponding point c.

One way to interpret µ(n) in (5.1) is as the minimum height of a hyperplane through

the origin that contains the point n (viewing Zr as a subset of the vector space Qr).

The condition µ(ni) → ∞ in Theorem 5.2.2 then immediately translates as the following

Lemma:

Lemma 5.2.3. Let (ni) be a sequence of elements of Zr. Then µ(ni) → ∞ as i→ ∞ if

and only if there is no hyperplane in Qr through the origin (i.e., no (r − 1)-dimensional

subspace of Qr) containing infinitely many terms of the sequence.

Proof. Suppose that for some constant c = (c1, · · · , cr) ̸= 0 the hyperplane c · x = 0

contains ni for infinitely many i, say for i = i1 < i2 < · · · . Clearing denominators, we

can suppose that c ∈ Zr. Then µ(nij ) ≤ max1≤k≤r|ck| for all j, and so µ(nij ) ̸→ ∞ as

j → ∞, and µ(ni) ̸→ ∞ as i→ ∞.

Conversely, if µ(ni) has a bounded subsequence, then infinitely many of the ni lie on

a finite set of hyperplanes, and so there is some hyperplane containing infinitely many

of the ni.

Proposition 1.2.4 tells us that a special case of Theorem 5.2.2 exists because of Boyd

[3]:

lim
n→∞

M(P (z, zn)) =M(P (x, y)) . (5.2)

Here the points (1, n) lie on a line, but not on a line through the origin.

We are now able to, loosely, explain how our experiments work now. And, in fact,

the following approach is suitable for searching not just for small Mahler measures of

single variable polynomials, but also for limits of sequences of such. In other words,

we can also find Mahler measures of two-variable polynomials as well. We give the full

details shortly afterwards.

Method:

• Find a good (r + 1)-variable polynomial Q(z0, z1, · · · , zr) ∈ Z[z0, · · · , zr].
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• For each of a selection of good hyperplanes through the origin in Qr+1 (or for

the intersection of several), choose a sequence of ni = (1, ni,1, · · · , ni,r) on the

hyperplane (or the intersection) and consider:

(i) M(Q(z, zni,1 , · · · , zni,r)) for small Mahler measures;

(ii) limi→∞M(Q(z, zni,1 , · · · , zni,r)) for small limits.

In practice, because of the way we are finding our polynomials, we are choosing the ni

in such a way that the limit point can be written as a two-variable Mahler measure, as

in (5.2), which can then be computed numerically reasonably quickly.

We are now at a point where we know how to get our good candidate polynomials

(which we have labelled Q here), and we know what to do once we have a “good sequence”,

ni, from a good hyperplane. What we do not know, however, is how to find these good

sequences once we have our good polynomials. We will outline the strategy to do so

next, which will then finally put us in a position to carry out our experiments.

5.2.2 The Search for Good Lines on Planes

In this Section, we are assuming we have found a digraph which admits a good candidate

polynomial. Our aim is understand how we can find a sequence ni from a hyperplane

associated to this polynomial to potentially find more good polynomials and digraphs.

Let Q(z0, · · · , zr) ∈ Z[z0, · · · , zr] be a candidate polynomial. For n1 · · · , nr positive

integers, and putting n = (n1, · · · , nr), we define:

Pn(z) = Q(z, zn1 , · · · , znr) .

Take a sequence of ni = (n1,i, · · · , nr,i) with all the nj,i positive integers. Provided

there is no hyperplane through the origin containing infinitely many of the points

(1, n1,i, · · · , nr,i), Theorem 5.2.2 tells us that:

lim
i→∞

M(Pni) =M(Q(z0, · · · , zr)) .

We shall deliberately break the constraints of this Theorem by choosing points that
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lie on hyperplanes through the origin. As we are seeking small Mahler measures, it is

reasonable for us to seek Q for which the (r + 1)-variable Mahler measure is not large:

although we avoid the generic limit, it would seem more surprising to find small Mahler

measures if the generic limit were large.

For fixed integers a1, b1, a2, b2, · · · , ar, br, the Laurent polynomial

Q(z, za1t+b1 , za2t+b2 , · · · , zart+br)

can be written as a Laurent polynomial in z and zt, say:

Q(z, za1t+b1 , za2t+b2 , · · · , zart+br) = Pa,b(z, z
t) ,

where a = (a1, · · · , ar) and b = (b1, · · · , br). In practice we will take ai ≥ 0 for all i, and

if ai = 0 then bi ≥ 0, but there is no need in theory for such restrictions. Note that for

r ≥ 2 and t ∈ Z the line of points

(n0, · · · , nr)t = (1, a1t+ b1, · · · , art+ br)

lie on a plane through the origin in Qr+1, namely the intersection of the r−1 hyperplanes

(−aib1 + a1bi)n0 + ain1 − a1ni = 0 , (5.3)

for 2 ≤ i ≤ r.

Thus we are not constrained by the generic limit in Theorem 5.2.2, and, by using

(5.2), the limits

lim
t→∞

M(Pa,b(z, z
t)) =M(Pa,b(x, y)) (5.4)

might be different for different choices of a and b (and indeed generally are different).

From a single polynomial Q we have the (somewhat surprising!) prospect of finding

more than one small limit.

It is now reasonable to ask how we are going to arrange this search. One option

would be to search over pairs (a,b) of bounded height. However, this can take a long
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time as r grows. Our alternative, which is less painful as r grows, is the following three

phase strategy:

Phase 1: Searching for Points

1.1 Choose a bound H for the heights of points, and a bound B for the largest Mahler

measure to be tolerated.

1.1.i When searching for small Mahler measures, we might chose B = 1.3,

1.1.ii When searching for small limits, we might choose B = 1.38.

1.2 Loop over the r-dimensional box 0 ≤ ni ≤ H, 1 ≤ i ≤ r, and store points

(n1, · · · , nr) for which M(Q(z, zn1 , · · · , znr)) ≤ B.

Phase 2: Searching for Lines

2.1 For each triple of points found in Phase 1, see if they lie on a line in Qr.

2.2 If so, write this line in canonical form at+ b, where a, b ∈ Zr, the content of a is

1 and the first nonzero entry in a is positive.

2.3 Store distinct lines found.

Phase 3: Check the Lines

3.1 For each line found in Phase 2, perform one of two tests, depending on whether

one is seeking small Mahler measures or small limit points.

3.1.i If seeking small limit points, compute M(Pa,b(x, y)).

3.1.ii If seeking small single-variable Mahler measures, then we are interested in

the precise values obtained as we approach the limit, whilst constraining the

degree, and so we compute M(Pa,b(z, z
t)) for a range of t, constrained by

a target bound for the degree (we chose a degree bound of 180, in order to

compare our results with those with the online tables of Mossinghoff [26] and

Sac-Épée [34]).

For part 3.1.ii of this process, we performed two reductions before assessing the

degree of Pa,b(z, z
t):
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• We removed any cyclotomic factors,

• If the polynomial was not weakly primitive, we weakly primitized the polynomial.

5.2.3 Experiments in Practice

We have now detailed how our experiments work in theory. Before outlining our results,

we explain in a bit more detail how these experiments and computations were run in

practice.

For each choice of our parameters (ℓ1, r1, etc.), we organised our search for small

Mahler measures as follows:

1. Loop over m and n up to some bound, determined by our patience.

2. Given m and n (and a decision as to whether one of the n + 1 edges is to be

positive), compute the Bi,j in (4.3) (with ℓ, r ∈ {−1, 0}).

3. Loop over ℓ and r, and for each pair (ℓ, r), compute the polynomial on the

right hand side of (4.24) with the sixteen possibilities given by (4.25) to give

sixteen reciprocal polynomials (multiplied and/or divided by polynomials of Mahler

measure 1) corresponding to the different decorations for the ends of the paths.

4. Compute the Mahler measure, and keep if it is small.

That is Phase 1 of the general strategy. Note that Theorem 4.3.1 tells us that there is

a polynomial Q(v, w, x, y, z) such that for each ℓ, m, r, n our reciprocal polynomial has

the shape Q(z, zℓ, zm, zr, zn). But we do not in fact compute Q explicitly. We merely

compute various instances of Q(z, zℓ, zm, zr, zn).

Phase 2 is done precisely as previously described.

For Phase 3, if we are after small limits, we have to ask the following: how do we

compute P , given that we have not computed Q explicitly? We could – in principle –

work through the detail to get explicit formulas for all sixteen Q. In practice, however,

for a line given by ℓ = a1t + b1, m = a2t + b2, r = a3t + b3, n = a4t + b4, we simply

computed Q(z, zℓ, zm, zr, zn) with t = 50 to obtain P (z, z50) (though other suitably

large enough values of t would also work). Then, writing the monomials in P (z, z50) in
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the shape cz50a+b and replacing this monomial by cyazb, we expect to have recovered

P (z, y). Indeed, for the relatively small digraphs used we can be certain that we have

done so.

5.3 Results

We are now finally in a position to run our experiments and outline our results.

As with all computations in this thesis, we used PARI/GP for our experiments. By

the fact we know what the shapes of the reciprocal polynomials will be in each possible

digraph, as outlined in Figure 5.8, we were able to create a command which could give

us the reciprocal polynomial in each case, depending on core digraph and decorations.

From here, we create a routine which can run over the number of vertices (up to a set

bound), and all possibilities of signed arcs and charges within the core digraphs.

We outline the experiments and corresponding results of small Mahler measures (of

single variable polynomials) and small limit points (that is, small Mahler measures of

two-variable polynomials) individually.

5.3.1 Small Mahler Measures

As with all other authors, we restrict our results to small Mahler measures coming from

polynomials of degree at most 180.

For small Mahler measures, we exclusively used the core digraph CD1, as shown in

Figure 5.6. Our experiments, of course, attached pendant paths with decorations at the

end, as detailed in Section 5.1.3. For reference, the digraphs we were therefore looking

at were of the following shape:

Cℓ Crn

m
ℓ1 r1 ℓ2 r2

DL DRℓ r

.

In the first instance, we put a bound of 10 on ℓ, m, r, n, for the number of vertices in

each section of the path, along with trying all possibilities for ℓ1, ℓ2, r1, r2, Cℓ, Cr. For

those that were especially fruitful, we pushed the bound on ℓ, m, r, n up to 20. In each
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case we looped over all sixteen patterns of decorations, and employed our three-phase

campaign: search for points (with a threshold of 1.3 for their Mahler measure), then

search for lines passing through triples of points and then finally test the lines.

In the online list of Mossinghoff [26], there are 8458 small measures, and in the online

list of Sac Épée [34] (along with two additional examples in the paper Otmani et al.

[29]) there are a further 115. We found 8334 of these, and also 1 new one. Including

our newly found value, this thus means we found just over 97% of known small Mahler

measures.

Additionally, there are 236 known tiny Mahler measures (those below 1.25): we

found 235 of these. Achieving this required us to push the bound on ℓ, m, n, r up to 30

for a particularly good family, as seen in Figure 5.9, and reducing the Mahler measure

bound to 1.25.

We state our newly found small Mahler measure here:

Result 5.3.1. The value mnew = 1.252826882865 · · · is the Mahler measure of a degree

180 irreducible polynomial, fnew.

Remark. The polynomial fnew has 81 terms, making it somewhat impractical to state

explicitly. To state it more simply, it is the only non-cyclotomic irreducible factor of the

short polynomial z221 − z160 − z155 + z66 + z61 − 1. More details on “short polynomials”

and shortness can be found in McKee and Smyth [25].

n

m
OO ��

DL DRℓ r

Figure 5.9: A particularly good family of digraphs for finding small Mahler measures.

5.3.2 Small Limit Points

When searching for limit points, the bound on Mahler measures used in Phase 1 of our

strategy was increased to 1.38 (at least for promising values of ℓ1, ℓ2, r1, r2, cℓ, cr), but
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the maximum bound for ℓ, m, r, n was necessarily lower: 15. We found 57 of the 61

known small limit points (so just over 93% of all known limit points).

In Table D.1, seen in Appendix D, we describe the limit points found and the

corresponding details of the core digraph, decorations and size of pendant paths for each

digraph with that limit point. This Table is dense with information; each row consists

of the following data:

• The first two columns consist of the parameters ℓ1, r1, ℓ2 and r2; the signed arcs

within the core digraph.

• The third column consists of the parameters cℓ, cr, DL and DR; cℓ and cr being

the corresponding values of charged vertices which appear in every core digraph,

and DL and DR representing the decorations at the ends of the pendant paths.

• The fourth column consists of the parameters u, d and cm; u and d being the

signed arcs which features only in the core digraphs CD2 and CD3, and cm being

the corresponding value of the charged vertex which appears exclusively in CD3.

• The fifth column features the line of (ℓ,m, r, n), the number of vertices in each

path of the overall digraph, parametrized by the variable t.

• The final column gives the value of the limit point.

To encapsulate all of this information into one Table, some conventions have been

adopted. We detail these, as well as some quirks of the Table, briefly to aid clarity.

In many examples, we have n = −1 in the digraph CD1. This therefore means that

Cℓ and Cr are in fact the same vertex. We repeat the corresponding value for cℓ and cr

in Table D.1 to avoid confusion.

If a limit points comes from the digraph CD3, the value of n is listed as 1. This

reflects the existence of the negative edge between the vertices Cℓ and Cm.

If a limit point comes from the digraph CD2, the value of n is listed as 0. This

reflects the lack-of existence of a guaranteed negative edge, whilst also making it clear

that we are not associating two vertices together. Unfortunately, this causes the caveat

that if the column featuring n is read locally, it may suggest that a negative edge does
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in fact exist. However, if read in context of the entire Table, one can see that if values

for u and d are present, and a value for cm is not present, then we are indeed looking at

the digraph CD2, and so there is no such guaranteed negative edge.

Furthermore, the decorations DL and DR are indicated as follows:

• no decoration: •,

• a charged vertex: + or − to indicate the necessary charge;

• a fork of two neutral leaves: > if on the left (i.e.: to represent DL) and < if on

the right (i.e.: to represent DR).

For example, the entry

ℓ1, r1 ℓ2, r2 cℓ, cr u, d ℓ, m Limit point

DL, DR cm r, n

−1, −1 1, −1 0, 0 t, 0t+ 2 1.36443581 . . .

+, + 2t+ 1, −1

represents the family of digraphs as seen in Figure 5.10:

+ +t 2 (2t+ 1)

−1
1

Figure 5.10: A family of digraphs with Mahler measure 1.36443581 · · ·.

We note that when we are talking about small Mahler measures of two-variable

polynomials (that is to say, small limit points) coming from digraphs, we actually are

referring to a family of digraphs, as opposed to a specific digraph. This should not come

as a surprise; the fact that we can view these values as limits of Mahler measure values

from single variable polynomials at least alludes to this fact.

Furthermore, as we saw in Example 5.1.2, when we were taking specific values of t,

the values of the Mahler measure for each digraph seemed to be tending to a value, as
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demonstrated in Table 5.1. Indeed, if we did take larger values of t, we would see that

the values were tending to 1.25543386 · · ·, which is the smallest known limit point of

Mahler measures.

As has been previously mentioned, this means that if we start with a specific core

digraph, and fix certain decorations for our pendant paths, we can still get a variety of

different limit point values, depending on what rate we grow the pendant paths.

Explicit Calculation

Up to this point, we have adopted a theoretical approach, and subsequent understanding,

of how to find Mahler measure values from families of digraphs. We will soon look at an

explicit example of how to find both the associated two-variable polynomial and Mahler

measure of a family of digraphs. Before doing this, we clearly define what we are finding:

Definition 5.3.2. Let G = Gt be a family of digraphs, whose number of vertices is

defined by a function of t. We define the Mahler measure of the family of digraphs,

M(G) as:

M(G) = lim
t→∞

M(Gt) ,

To make this absolutely clear, for a fixed t, Gt is some digraph, and so we can find its

reciprocal polynomial and M(Gt) is a Mahler measure value of dimension one. On the

other hand, G can be viewed as an “infinite digraph”, and so M(G) is the limit point of

the values M(Gt) (a value which we assume to exist). Thus, M(G) is a Mahler measure

value of dimension two, and has an associated two-variable polynomial. We explicitly

show how to find these two-variable polynomials shortly.

Drawing upon both our knowledge of growing digraphs from chapter 4, and how

to calculate the Mahler measure of two-variable polynomials from chapter 2, we now

explicitly find both the associated two-variable polynomial and Mahler measure of a

family of digraphs. In particular, we will look at the family of digraphs represented in

Figure 5.10.

Example 5.3.3. We begin by noting that we will label the reciprocal polynomial as

R++
t+1,2t+2(z), since ℓ = t and r = 2t + 1, and we have an additional vertex from our
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decoration at each end.

We recall that (4.24) gives us a general shape for the reciprocal polynomial of the

digraph. So, our first step is to calculate this polynomial; that is, we calculate the Bi,j

and the cij . The cij are determined by the decorations at the ends of the pendant paths.

The Bi,j are linear combinations of the Ri,j , which come from calculating the reciprocal

polynomial of the basic core digraph, with one vertex attached where appropriate. The

below shows exactly the look of the digraphs where our Ri,j originate from:

(i− 1) 2 (j − 1)

−1
1

.

Computing these Ri,j is straightforward. Letting G represent our core digraph, we

can find the characteristic polynomial of Gi,j , and then the corresponding reciprocal

polynomial in each instance.

This gives us the following:

R1,1(z) = z10 + 2z8 + 2z6 + 2z4 + 2z2 + 1 ,

R1,0(z) = z8 + 2z6 + z4 + 2z2 + 1 ,

R0,1(z) = z8 + 2z6 + 3z4 + 2z2 + 1 ,

R0,0(z) = z6 + 2z4 + 2z2 + 1 .

(5.5)

We now find the Bi,j , using (4.3):

B1,1(z) = z10 − z6 ,

B1,0(z) = z6 − z4 ,

B0,1(z) = −z6 + z4 ,

B0,0(z) = −z4 + 1 .

(5.6)

Furthermore, for the given decoration, we have that c10 = z, c01 = z and so c00 = z2

(this can be found from Table 4.1). So, (4.24) gives us:

κ1(z)R
++
t+1,2t+2(z)

κ2(z)
= z2(z2 − 1)(z6t+10(z2 + 1)− z4t+7 + z2t+5 − (z2 + 1)) . (5.7)
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Since κ1(z) and κ2(z) are both Kronecker-cyclotomic polynomials (they are (z + 1)2z2

and 1 respectively), we do not need actually to include them in our calculations, and

work solely with the right hand side of (5.7) rather than computing the reciprocal

polynomial itself. Furthermore, we can ignore the z2(z2 − 1) term, since this also has

Mahler measure 1.

We now need to calculate the two-variable polynomial whose Mahler measure gives

the limit of the sequence of Mahler measures obtained as t varies, as explained towards

the end of Section 5.2.3. For this particular example, however, we can perform the

manipulation directly. Noting that we only have even coefficients of t in our powers of z,

we put y = −z2t+3, where the ‘3’ is chosen to produce a polynomial of smallest degree

in z. This gives us:

P (z, y) = −
(
y3z3 + (y + 1)z2 + (y3 + y2)z + 1

)
. (5.8)

We can now calculate the Mahler measure of (5.8). We find that the most efficient

way to calculate this using PARI/GP is to make use of Lemma 2.2.1 and the refined

method we introduced. We note our P here is indeed reciprocal so we can use our

method. Then, calculating M(P (z, y)) gives us the limit point 1.36443581 · · ·, as stated.

Finally, we note that the polynomial −P (z, y) agrees with that found by Boyd and

Mossinghoff [5].

Remark. We have implicitly used the fact that M(±P (±x,±y)) =M(P (x, y)) here.

We have yet to confirm this is true however; we discuss this in more detail in chapter 6.

We have previously noted that we are not constrained by the generic limit in Theorem

5.2.2 and, as seen in (5.4), we can get different limit points. In practice, this means

that if we change how our pendant paths grow (whilst keeping all other variables the

same), we do actually find a different limit point. This did sound like a surprising notion

as first, but we can see from our method in Example 5.3.3 why this is the case. We

demonstrate this phenomenon with the following example:
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Example 5.3.4. Consider the following family of digraphs:

+ +t 2 5t

−1
1

Figure 5.11: A different family of digraphs.

We note how the only difference here compared to Figure 5.10 is we are changing

how our “right” pendant path is growing.

Following this through (noting in particular that the Bi,j and cij are the same as in

Example 5.3.3), we eventually get:

P (z, y) = (y6z2 − 1)(z2 + 1)− (y5 − yz4) .

Finally, we find that M(P ) = 1.36272428 · · ·, which is the Mahler measure of our family

of digraphs.

Remark. These explicit examples have been included for clarity of what actually

happened in our experiments. In practice, everything outlined here is computed within

the experiment; the only user required element is to input initial bounds and values.

5.4 A Remark on Bridges

In Section 4.4, we saw how we can take a digraph, and create a new, large, digraph by

attaching pendant paths to our original digraph, and then attaching new digraphs at the

ends of these pendant paths. However, towards the end of the Section, we stated that

we would not be performing experiments with these types of digraphs. After seeing the

results of the experiments we have run, we take the opportunity here to further justify

why we have not experimented on these digraphs.
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Strong Set of Results

From experimenting only on a select few cases of digraphs which have had two decorated

pendant paths attached, we have found a large percentage of known small Mahler

measure values and small limit points. It is not unreasonable to suggest that with

stronger computational power, and more time, that these experiments could find more

as well. With such a positive set of results, which grew as we expanded our search

parameters, it made sense to work with a simpler setup which was proving fruitful.

Furthermore, the experiments we ran were on digraphs which supported our heuristic

intuition. The concept of bridges between digraphs was one which veered away somewhat

from this original idea. In turn, veering away from this idea may not yield as positive a

set of results.

Time

As mentioned in Section 4.4.5, the calculation of the reciprocal polynomial of these

bridged digraphs was more time-consuming than for our other digraphs. This in itself is

not too problematic. However, we also need to combine the calculations of this reciprocal

polynomial with our three phase process, as outlined in Section 5.2.2.

This causes two problems.

• We need to find the reciprocal polynomial of many different bridged digraphs (as

our parameters vary), meaning we need to run the routine a large number of times,

• The three phase process is itself time-consuming.

So, with these problems coupled together, this increases the time taken to run the

experiment and achieve the results by a noteworthy amount.

Hope for the Future?

Of course, there is a possibility that experimenting on these bridged digraphs may be

fruitful. Performing calculations on a more powerful machine, the creation of a more

efficient routine and even trying a different piece of software are just some immediate

ways one can think of to make this idea less time-consuming.
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Equally, this idea and method might be a way of finding an even greater yield of

digraphs with small Mahler measures, and more families of digraphs with small limit

points of Mahler measures. This may also be the only way to find some of the values

we are missing. So there is hope that, at the very least, this idea can be considered for

improvement and implemented in the future.



Chapter 6

Polynomials with the Same Mahler

Measure

When calculating the Mahler measures of digraphs throughout this thesis, we have

implicitly used some results which explain why different polynomials (and, in turn,

different digraphs) have the same Mahler measure. For example, we have made use of

the multiplicative nature of the Mahler measure repeatedly, to see that if an n-variable

polynomial is an n-Kronecker-cyclotomic multiple of another, they will share the same

Mahler measure. In Example 5.3.3, we made use of the fact that changing the sign of

variables fixes the Mahler measure. Though this latter fact is something we have yet to

verify, we will do so soon. These are fairly trivial facts. However, it does lead us to an

interesting question: when can two polynomials share the same Mahler measure?

In this chapter, we look at attempts to answer this question for both single variable

and two-variable polynomials. As we will see, these are different situations and so we

look at them completely separately. Before moving to look at these attempts, we stress

that these are indeed only attempts to answer this question: as of yet, we do not have a

complete answer for when two polynomials do share the same Mahler measure. As such,

this remains an open problem, but we conjecture ideas which may lead to a resolution.
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6.1 Single Variable Polynomials – Motivating Examples

We begin by stating our over-arching claim related to single variable polynomials.

Open Problem 6.1.1. Let f, g ∈ Z[x] be monic, weakly primitive, irreducible, reciprocal

polynomials, with non-trivial Mahler measures.

Is it the case that M(f) ̸=M(g)?

This is phrased in a very specific way. In this case, we are not giving a list of

conditions which necessarily guarantees that two polynomials share the same Mahler

measure. Instead, we are giving conditions which – we believe – guarantee that two

polynomials cannot share the same Mahler measure. Then, in turn, if one of these

conditions is broken, we can find polynomials which share the same Mahler measure.

We phrase it in this way because of the wider context of this thesis and the work

presented. Our focus has been on attempting to find polynomials with small Mahler

measures by means of several different experiments. Whilst our experiments are versatile

and largely efficient, it is fair to ask how much these could be improved if we were to

ignore polynomials which share the same Mahler measure. So, it would be ideal to

attempt to find conditions which we could constrict polynomials to, which guarantee

they would admit different Mahler measure values, as presented in Open Problem 6.1.1.

As it stands though, Open Problem 6.1.1 is a very specific statement to make with

very little justification. As such, before moving on, we give examples which show that if

any one of these conditions are broken, then it is possible to have an equality of Mahler

measures. This gives a certain level of justification that these conditions are necessary.

Example (Breaking the Non-Trivial Condition).

We have seen from Lemma 1.1.8 that all Kronecker-cyclotomic polynomials have trivial

Mahler measure.

Indeed, if we consider Φ2(x) = x+ 1 and Φ3(x) = x2 + x+ 1, these are both monic,

weakly primitive, irreducible and reciprocal, but both have trivial Mahler measure.

Even without knowledge of Lemma 1.1.8, it would not be a surprise that we would

need to exclusively consider non-trivial Mahler measure values within the context of our

Open Problem.
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Example (Breaking the Monic Condition).

Let f(x) = 2x2 + x + 2 and g(x) = 2x2 + 3x + 2. These are both weakly primitive,

irreducible and reciprocal, and have a non-trivial Mahler measure, but we have that

M(f) =M(g) = 2.

Again, this is not too much of a surprise. More importantly, however, in the context

of finding small Mahler measure values, we do indeed only wish to consider monic

polynomials, since for polynomials f ∈ Z[x] with leading coefficient an, we know that

M(f) ≥ |an|.

Example (Breaking the Weakly Primitive Condition).

Let f(x) = x16 + x10 − x8 + x6 +1 and g(x) = x40 + x25 − x20 + x15 +1. These are both

monic, irreducible and reciprocal, and have a non-trivial Mahler measure, but we have

that M(f) =M(g) = 1.28063815 · · ·.

If we were to weakly primitize both of these polynomials, by replacing x2 with x in f ,

and replacing x5 with x in g, we then get the same polynomial: h(x) = x8+x5−x4+x3+1.

Once again, this condition should not come as a surprise, especially since we know

that the procedure of weakly primitizing a polynomial does not affect its Mahler measure.

As such, if two polynomials share the same weakly primitized polynomial, then they will

of course share the same Mahler measure.

Example (Breaking the Irreducible Condition).

Let g(x) = κ(x)f(x), where κ is some Kronecker-cyclotomic polynomial. Then:

M(g) =M(κf)

=M(κ)M(f)

=M(f) .

This example is both unsatisfying, and also avoidable. For instance, we could specify

that at least one of our polynomials simply does not have any Kronecker-cyclotomic

factors, whilst still remaining reducible. It could then be possible that this is enough to

always ensure that our polynomials share different Mahler measure values. However, as

we now see, this is still possible.
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Example (Breaking the Irreducible Condition Again).

Let f(x) = x2−18x+1 and g(x) = x4−10x3+23x2−10x+1 = (x2−3x+1)(x2−7x+1).

These are both monic, weakly primitive and reciprocal, and have a non-trivial Mahler

measure, but we have that M(f) =M(g) = 9 + 4
√
5.

This example is actually of a very specific nature and structure, which in turn would

allow us to create many other examples of this form. We look at this structure now:

Example 6.1.2. Let α be a Salem number with minimal polynomial µα(x). Let

f(x) = µα3(x) and g(x) = µα(x)µα2(x).

It is straightforward to see that, for any positive integer n, M(µαn) = αn. So, it

follows that we have M(f) =M(g) = α3.

Remark. The structure here also applies if we were to take a quadratic Pisot number;

that is, Pisot numbers whose minimal polynomial is of the form x2 + ax+ 1, for a ∈ Z

and a ≤ −3.

We note that when breaking the irreducible condition, especially in this instance,

we are only taking one of our polynomials to be irreducible, whereas when we have

demonstrated breaking our other conditions, we have chosen both polynomials to break

the condition. Of course, we could create an example where both polynomials are

reducible (by letting f(x) = µα(x)µα4(x) and g(x) = µα2(x)µα3(x), for example).

Our presented examples simply demonstrate the most straightforward example of this

phenomenon.

Another point worth raising is that in the context of finding small Mahler measures,

it is likely that we want to be considering irreducible polynomials in any case.

Example. Let f ∈ Z[x] be a reducible polynomial with n irreducible factors, say

f = f1 · · · fn, and assume that none of these factors are Kronecker-cyclotomic. If M(f)

is small, then there is at least one fi such that M(fi) < (1.3)1/n.

In the case n = 2, this would mean that there is at least one factor, say f1, such

that M(f1) <
√
1.3 = 1.14017542 · · ·. As this is smaller than the smallest known Mahler

measure value, we do not expect this to happen.
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In particular, with polynomials which follow the structure presented in Example

6.1.2, the smallest Mahler measure we can obtain would be λ3 = 1.62754514 · · ·, since λ

is the smallest known Salem number.

Example 6.1.3 (Breaking the Reciprocal Condition). (Dixon and Dubickas [11]).

Let f(x) = x6 − x4 − x3 − x2 + 1 and g(x) = x4 − x+ 1. These are both monic, weakly

primitive and irreducible, and have a non-trivial Mahler measure, but we have that

M(f) =M(g) = 1.40126836 · · ·.

Once more, in context of finding small Mahler measures, we know from Theorem

1.1.19 that we have to restrict ourselves to reciprocal polynomials anyway. However, it

is interesting to see that we also require this condition if we wish to only ever consider

polynomials which admit different Mahler measure values. Furthermore, there are results

from Dixon and Dubickas [11] which may prove useful in attempts to answer Open

Problem 6.1.1, which we will now explore.

6.2 Attempts at a Proof

Now that we have justified the conditions set out in Open Problem 6.1.1, we now move

to looking at attempts to answer and prove the presented idea. We stress that the results

and discussion that follow may not necessarily form the basis of the way to answer our

Open Problem, but they do present a possible route which seems fruitful.

Definition 6.2.1. Let f ∈ Z[x] and α be a zero of f . We say that α is large if |α|> 1.

This is a fairly intuitive definition; in particular, a consequence of this definition is

that we see only large zeros contribute to the Mahler measure of a polynomial. This

now allows us to introduce the following, more interesting, concept:

Definition 6.2.2. Let f ∈ Z[x] and M(f) = M. We say that f is basal (for M) if it

is the polynomial of least degree such that:

• M(f) = M ;

• At most half the zeros of each irreducible factor of f are large.
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Remark. We can choose to omit the “for M”, since a polynomial can only ever be basal

for one value.

Example. We look at simple examples of polynomials which are basal and which are

not.

• Lehmer’s polynomial, Λ(x), is basal (for λ), since it is irreducible, and only has

one large zero.

• x4 − 2x3 − x2 + x+2 = (x3 − x− 1)(x− 2) is not basal, since one of its irreducible

factors only has large roots.

We note in the latter example that the polynomial has at most half of its zeros large,

but since one its irreducible factors has more than half of its zeros large, the polynomial

is not basal.

There is also a somewhat stronger notion we can introduce:

Definition 6.2.3. Let f ∈ Z[x] be irreducible and M(f) = M. We say that f is basal

irreducible if it is the polynomial of least degree among irreducible polynomials such

that:

• M(f) = M ;

• At most half of the zeros of f are large.

Our focus will be on basal irreducible polynomials. Indeed, if the statement of Open

Problem 6.1.1 is correct, it makes sense to do so, since we wish to be finding polynomials

which will always have different Mahler measures. More importantly, there is a known

result related to irreducible polynomials which are basal that we can take advantage of:

Proposition 6.2.4 (Dixon and Dubickas [11]). Let E ⊂ C be a finite Galois extension

of Q, f ∈ Z[x] and M(f) ∈ E.

If f is basal irreducible and monic, then all zeros of f lie in E.

We omit a proof; details are provided by Dixon and Dubickas.

It is easy to see the relevance of such a result, especially in relation to our problem.

Indeed, a basal irreducible polynomial must also be weakly primitive by definition, and
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so a reciprocal, monic polynomial with non-trivial Mahler measure will have at most

half its zeros large. So this result seems to fit nicely with our problem.

Indeed, we can use this result to show the following:

Lemma 6.2.5. Let f, g ∈ Z[x] be monic and irreducible of degree at least 2 such that

M(f) =M(g). Suppose that f has exactly one large zero and is the polynomial of least

degree with Mahler measure M(f) (so deg(g) ≥ deg(f)). Then, the splitting field of f

over Q is contained inside the splitting field of g over Q.

Proof. Let α be the large zero of f and β1, · · · , βm be the large zeros of g. Additionally,

let K and L be the splitting fields over Q of f and g respectively.

Claim: f is basal irreducible.

Justification: As f is the polynomial of least degree with Mahler measure M(f), we only

need to check that at most half of the zeros of f are large. However, we know that there

is exactly one large zero, and deg(f) ≥ 2, so this is indeed the case. Hence, f is indeed

basal irreducible.

As M(f) =M(g), we have that |α|= |β1 · · ·βm|. As such, it follows that M(f) ∈ L.

Then, by Proposition 6.2.4, all zeros of f are inside L. Thus, K ⊂ L, as required.

As we see in the proof here, the equality of the Mahler measures is particularly

crucial for arriving at our final result. In particular, if we were to fix all other conditions,

and use the notation from the proof of Lemma 6.2.5, we can arrive to a logical conclusion

that:

“M(f) =M(g) =⇒ K ⊂ L” .

In turn, taking the contrapositive of this would suggest that:

“K ̸⊂ L =⇒M(f) ̸=M(g)” . (6.1)

Following this argument, we can pose a slightly weaker question to spawn from Open

Problem 6.1.1, which appears more approachable to solve.

Open Problem 6.2.6. Let f, g ∈ Z[x] be monic, weakly primitive, irreducible, reciprocal

polynomials, with non-trivial Mahler measures. Let f have exactly one large zero and be
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the polynomial of least degree with Mahler measure M(f), and g have exactly two large

zeros.

Is it the case that M(f) ̸=M(g)?

Of course, this is a weaker question than our original one, and if we were to able

to answer Open Problem 6.1.1, we do indeed get an answer here too. However, we can

also see the appeal in adding the additional constraints presented here. If we are able to

answer this positively, one would hope that maybe we can learn enough to tackle the

problem more generally; for example, by considering an increased number of large zeros

for g, or an arbitrary number of large zeros for g.

Though we still do not have an answer to this question, we do note that, because of

Lemma 6.2.5 and the logical conclusion reached by (6.1), to solve this problem, it would

suffice to show that the splitting field of f over Q is not contained in the splitting field

of g over Q.

Depending on the success of this potential strategy, it could also be extended further.

In theory, we could also extend Lemma 6.2.5 to consider the case where the polynomial

f has more than one large zero as well, assuming that deg(f) is suitably large enough.

However, we expect that the use of this, and the subsequent care that would have to be

taken when using this, can only become apparent if we can understand how to solve

Open Problem 6.2.6.

6.2.1 Survey of Further Ideas

We have now established a weaker problem, as well a direct avenue for solving this

problem. Now, we give a brief overview of routes explored so far to attempt to answer

Open Problem 6.2.6. Again, we stress that this is simply an overview exploring potential

ideas and the justification for their exploration, and they may or may not be fruitful

options.

The results of Proposition 6.2.4 and Lemma 6.2.5 certainly suggest that we should

familiarise ourselves further with some useful Galois theoretic results. Indeed, there are

some results related to the Galois theory of reciprocal polynomials and, more narrowly,

Salem polynomials, which may be of relevance.
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Theorem 6.2.7 (Viana and Veloso [46]). Let F be a field, a1, · · · , am ∈ F be distinct

values and n = 2m. Then, the polynomial:

f(x) = xn + 1 +

m∑
i=1

(−1)iai(x
n−i + xi) , (6.2)

has Galois group Gal(f) = (Z/2Z)m ⋊ Sm, where Sm is the symmetric group on m

elements.

This result is related to a very specific shape of reciprocal polynomial. However, this

does at least give us a level of insight into how we might expect the Galois group of any

given reciprocal polynomial to look. A more specific result related to Salem polynomials

(that is, polynomials that are minimal polynomials of a Salem number) can also be

derived.

Definition 6.2.8. Let f ∈ Z[x] be monic, irreducible and reciprocal, with deg(f) = 2n

and zeros α1, 1/α1, · · · , αn, 1/αn. The corresponding trace polynomial of f is the

integer polynomial t(x) with zeros γ1 = α1 + 1/α1, · · · , γn = αn + 1/αn.

Theorem 6.2.9 (Christopoulos and McKee [8]). Let f be a Salem polynomial of degree

2n, t be its corresponding trace polynomial and Gal(f) and Gal(t) be the Galois groups

of f and t respectively. Then:

Gal(f) ∼= N ⋊Gal(t) ,

where N is the kernel of the natural map ψ : Gal(f) → Gal(t). In particular, we have

that N ∼= (Z/2Z)n or N ∼= (Z/2Z)n−1, with the latter only possible when n is odd.

A detailed proof of this is provided by Christopoulos [7]. However, the key thing to

note with this is the similarity of the results between this and Theorem 6.2.7. Indeed,

the statement of Theorem 6.2.9 is perhaps more insightful, and we explain this in slightly

more depth now.

Definition 6.2.10. A group H is a group extension of a group K by N if there exists

a homomorphism ϕ : H → K with kernel N .

Furthermore, we say a group extension is split if H ∼= N ⋊K.
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In the case of Theorem 6.2.9, we can clearly see that Gal(f) is a group extension

of Gal(t) by N , and that this does indeed split. We could also see this phenomenon in

Theorem 6.2.7. Unfortunately, it is not the case that we can find a split group extension

for every reciprocal polynomial. For example, Viana and Veloso [46] show that for the

n-th cyclotomic polynomial Φn, which is reciprocal for n > 1, we have a split extension

if and only if either 4 |n, or p |n for some prime p such that p ≡ 3 (mod 4).

Now we turn to our set up more specifically. Consider some monic, weakly primitive,

irreducible, reciprocal polynomial f ∈ Z[x], with zeros α1, 1/α1, · · · , αn, 1/αn, deg(f) =

2n and with corresponding trace polynomial t. Labelling the Galois groups of f and

t as Gal(f) and Gal(t) respectively, we again know that there exists a natural map

ψ : Gal(f) → Gal(t) with kernel N . In particular, elements of N must map each zero α

to either itself or 1/α. So, elements of N swap pairs of reciprocal zeros, meaning that N

must be some subgroup of (Z/2Z)n. Furthermore, if we have a split extension, we then

have that Gal(f) ∼= N ⋊Gal(t). Knowing that |N | ≤ 2n, and Gal(t) cannot be larger

than Sn, we have that |Gal(f)| ≤ 2nn!.

We now return to the final conditions of Open Problem 6.2.6. Let deg(f) = 2n and

deg(g) = 2m, for m ≥ n. We set up deg(g) ≥ deg(f) since our set up states that f is

the polynomial of least degree with Mahler measure M(f). So, if we are to answer the

posed question, we need to consider a polynomial of weakly greater degree.

Since f has exactly one large zero, we know it is a Salem polynomial. Hence, by

Theorem 6.2.9, we know we can find a group extension which splits, and by the argument

above, we know that |Gal(f)| ≤ 2nn!, where Gal(f) is the Galois group of f .

However, less can be said about g. We can consider its corresponding trace polynomial,

but we do not know if this leads us to a split extension. If we are in the situation where

we do have a split extension, we can say that |Gal(g)| ≤ 2mm!, where Gal(g) is the Galois

group of g. If we do not have a split extension, all we can say is that |Gal(g)| ≤ (2m)!.

Now say that K and L are the splitting fields of f and g respectively. We know that

|K|= |Gal(f)| and |L|= |Gal(g)|. Using (6.1), this would suggest that, to show K ̸⊂ L

and hence M(f) ̸=M(g), we have to show that |Gal(f)| ∤ |Gal(g)|. As it stands, we do

not have enough information to verify this either way.
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6.3 Two-Variable Polynomials: An Introduction

The rest of this chapter will now focus on two-variable polynomials, as we attempt to

answer the question of whether two different two-variable polynomials can share the

same Mahler measure. Unlike with the single variable case, and at the start of Section

6.1, we do not give an over-arching claim or statement. We will see that this is because

we currently do not have an over-arching claim to make, but rather claims for specific

circumstances. Indeed, there are many more subtleties to consider with two-variable

polynomials, which make it more difficult to give a “one size fits all” style claim, similar

to Open Problem 6.1.1.

We note that when we have studied limit points of Mahler measures, and two-variable

polynomials, throughout this thesis so far, we have again exploited the multiplicative

nature of the Mahler measure in many cases. However, as mentioned, in Example 5.3.3

we made use of the fact that changing the signs of variables also fixes the Mahler measure.

This is something we have yet to verify, but will in Section 6.4.

A particular issue we have experienced with our calculations of the Mahler measures

of two-variable polynomials is our lack of certainty about their exact value. We have

already briefly discussed how this is a wider issue and not something we particularly

address within this thesis. However, the consequence of this is when we find two two-

variable polynomials which, according to PARI/GP, for example, share the same Mahler

measure value, we do not have complete certainty that they actually are the same. This

is significantly less of a problem with single variable polynomials, since we have a deep

pool of knowledge at our disposal for finding roots (and consequently, zeros) of such

polynomials. As such, we can feel very confident in saying when two single variable

polynomials have equal Mahler measure, as in Example 6.1.3, for instance.

As such, we will look at different ways of determining if two two-variable polynomials

share the same Mahler measure without having to actually compute their Mahler

measures. We hope that these different ways fully explain when two-variable polynomials

do share the same Mahler measure, but we as of yet have no justification to support

such a claim.
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6.4 A Notion of Equivalence

As stated, our aim is to find some way of determining if two two-variable polynomials

share the same Mahler measure value, without having to rely on calculations. Before

doing this, however, we first look at some basic results which will help us in determining

such a concept, as well as giving wider context to what we already know.

6.4.1 Basic Results

The first of the basic results we state is one which we have already seen, albeit in a

slightly different form. However, we restate it to note its importance here:

Lemma 6.4.1 (See also: Lemma 1.2.6). For polynomials P,Q ∈ C[x, 1/x, y, 1/y],

M(PQ) =M(P )M(Q).

This is particularly useful for helping us with some other simple results related to

two-variable polynomials. However, there is one crucial change we have made to our

statement: we are now considering Laurent polynomials, as opposed to linear polynomials.

We note that we can consider Laurent polynomials as a result of Lemma 2.5.1. This

does not affect the associated proof in any way, but the results that follow will also

apply to Laurent polynomials, hence why we have stressed this extension.

Corollary 6.4.1.1. For P ∈ C[x, 1/x, y, 1/y] and r, s ∈ Z, we have that:

M(xrysP (x, y)) =M(P (x, y)) . (6.3)

Remark. This result follows trivially, but we state it owing to its importance later on.

Lemma 6.4.2. For P ∈ C[x, 1/x, y, 1/y], we have that:

M(P (−x, y)) =M(P (x, y)) ; (6.4a)

M(P (x,−y)) =M(P (x, y)) . (6.4b)

Proof. We first prove (6.4a). Furthermore, this follows a similar argument to a method

we have seen for calculating the Mahler measure of a two-variable polynomial.
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Let P (−x, y) have degree d in y, and y1(−x), · · · , yd(−x) be continuous, piecewise

analytic functions in −x that are the d solutions to P (−x, y) = 0. This means we can

write:

P (−x, y) = a0(−x)
d∏

k=1

(y − yk(−x)) ,

where a0(−x) is the coefficient of the yd term. A similar argument used in the Proof of

Proposition 1.1.2 shows that:

∫ 1

0
log|P (−x, e2πis)| ds = |a0(−x)|+

d∑
k=1

log+|yk(−x)| . (6.5)

Now consider substituting in x = e2πit in (6.5), and then integrating over t. This

gives us:

∫ 1

t=0

∫ 1

s=0
log|P (−e2πit, e2πis)| ds dt =

∫ 1

t=0
|a0(−e2πit)| dt+

d∑
k=1

∫ 1

t=0
log+|yk(−e2πit)| dt

⇒ m(P (−x, y)) = m(a0(−x)) +
d∑

k=1

∫ 1

t=0
log+|yk(−e2πit)| dt︸ ︷︷ ︸

=S

.

(6.6)

We now need to consider the summation S. Firstly, we note that −e2πit = e2πi(t+1/2).

So, we can rewrite S as:

S =

d∑
k=1

∫ 3
2

t= 1
2

log+|yk(e2πit)| dt .

However, we note that if we were to split these into two integrals, such as:

S =
d∑

k=1

∫ 1

t= 1
2

log+|yk(e2πit)| dt+
d∑

k=1

∫ 3
2

t=1
log+|yk(e2πit)| dt ,

then the second integral is actually equal to

d∑
k=1

∫ 1
2

t=0
log+|yk(e2πit)| dt .
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This is by a similar argument to that seen in the Proof of Lemma 2.2.1, as demonstrated

in equations (2.9) and (2.10).

In turn, this gives us that:

S =

d∑
k=1

∫ 1

t=0
log+|yk(e2πit)| dt .

Substituting this back into (6.6) thus results in:

m(P (−x, y)) = m(a0(−x)) +
d∑

k=1

∫ 1

0
log+|yk(et)| dt . (6.7)

As in (2.6), we note here that m(P ) is the logarithmic Mahler measure of a two-

variable polynomial, whilst m(a0(−x)) is the logarithmic Mahler measure of a single

variable polynomial. However, the absolute values of the roots of a0 are not changed

with the map x 7→ −x. Therefore, m(a0(−x)) = m(a0(x)).

In particular, this means that (6.7) is equal to (2.6), and so m(P (−x, y)) =

m(P (x, y)), and our result follows.

We note that a similar argument holds for the proof for (6.4b).

Remark. An alternate proof of Lemma 6.4.2 would see us make use of Jensen’s Formula,

from Proposition 1.1.3. In particular, we could take the double integral used for

calculating the Mahler measure of P and rewrite it as single integral (in a similar fashion

to what we saw in Example 2.1.2, for example). We know that the Mahler measure of a

single variable polynomial is invariant under a change of sign, since the absolute values

of the zeros do not change, which would give us our result.

Lemma 6.4.3. A polynomial P which can be weakly primitized in one variable has the

same Mahler measure as the resulting weakly primitized polynomial. That is to say, for

P ∈ C[x, 1/x, y, 1/y] and r, s ∈ Z, we have that:

M(P (xr, y)) =M(P (x, y)) ; (6.8a)

M(P (x, ys)) =M(P (x, y)) . (6.8b)
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Proof. Again, we will only outline a proof of (6.8a), noting that (6.8b) follows by an

analogous argument.

Firstly, we fix y. Then, for a given a root ρ of P (x, y) = 0, we can find r roots of

P (xr, y) = 0 which correspond to ρ; say ρ1, · · · , ρr. Each of these ρi have modulus ρ1/r.

As such, the contribution toM(P (x, y)) from ρ equals the contribution toM(P (xr, y))

from these ρi. Thus, we find that M(P (x, y)) =M(P (xr, y)).

Before moving on, we note that, for positive integers r and s, it is convenient to

extend our defined construction of the Mahler measure of a Laurent polynomial (first

introduced in Lemma 2.5.1) in x and y to define the Mahler measure of a Laurent

polynomial in x1/r and y1/s. To see how we define this, let

P (x, y) =
∑
i, j

ci,jx
i/ryj/s

be a non-zero Laurent polynomial in x1/r and y1/s, for finitely many non-zero terms

ci,j ∈ C. For absolute clarity, we are here summing over pairs of integers, (i, j). Then,

P (xr, ys) is a Laurent polynomial in x and y, and we can define:

M(P (x, y)) :=M(P (xr, ys)) .

For this construction, we do not require that r and s are chosen minimally such

that P (xr, ys) is a Laurent polynomial. This condition is not required due to Lemma

6.4.3. For example, if we had integers r1, s1, r2 and s2, then we note that we have

M(P (xr1 , ys1)) =M(P (xr1r2 , ys1s2)) andM(P (xr2 , ys2)) =M(P (xr1r2 , ys1s2)), meaning

that M(P (xr1 , ys1)) =M(P (xr2 , ys2)).

6.4.2 Introducing and Justifying Equivalence

We are now in a position to introduce our notion of equivalence here.

Definition 6.4.4. Let P,Q ∈ Z[x, y]. We say that P and Q are equivalent if there

exists an affine transformation xrys 7→ xar+bs+eycr+ds+f , for a, b, c, d, e, f ∈ Q and

ad− bc ̸= 0, taking ±P (±x,±y) to Q(±x,±y).



6.4. A Notion of Equivalence 208

At this point, it is sensible to question our choice of nomenclature here, as well as

the reasoning for the precise set up of the definition. In other words, we have yet to

justify why such a concept can be referred to as “equivalence”. This is encapsulated in

the following result:

Theorem 6.4.5. Let P,Q ∈ Z[x, y] be equivalent. Then, M(P ) =M(Q).

So, our reasoning for introducing this definition of equivalence is to create a result

which allows us to determine, with relative ease, if two polynomials share the same

Mahler measure. Of course, the word “equivalent” is somewhat overused broadly across

mathematics, and this definition should not be linked to, or confused with, any other

concepts of ‘polynomial equivalence’ which may exist.

We are not yet in a position to see the proof of Theorem 6.4.5. Before we move to

the necessary auxiliary results, we look at an example of two equivalent polynomials.

Example 6.4.6. Let P (x, y) = y8x8 − y8x6 + y5x5 + y3x3 − x2 + 1 and Q(x, y) =

y2x8 + yx8 + yx5 + yx3 + y + 1.

Using PARI/GP, for example, we find that M(P ) = 1.36365149 · · · and M(Q) =

1.36365149 · · ·. However, we remain unsure if these are indeed equal, or just agree to a

large number of decimal places.

The affine transformation xrys 7→ x−4r+3s+8y
−r
2
+ s

2
+1 takes −P (x, y) to Q(x,−y).

In this transformation, a = −4, b = −1
2 , c = 3, d = 1

2 , e = 8 and f = 1. As such,

|ad− bc|= | (−4)
(
1
2

)
−
(
−1

2

)
(3) |= 1

2 ̸= 0.

Thus, P and Q are equivalent and Theorem 6.4.5 tells us that M(P ) =M(Q).

For some of the next results, we will consider the logarithmic Mahler measure of a

two-variable polynomial in its integral form, as seen in Definition 1.2.1:

m(P ) =

∫ 1

t=0

∫ 1

s=0
log|P (e2πis, e2πit)|ds dt . (6.9)

Lemma 6.4.7. The integral seen in (6.9) is invariant under the transformation (s, t) 7→

(s+m, t+ n), for m,n ∈ Z.

Proof. This follows from the periodicity of e2πi.



6.4. A Notion of Equivalence 209

Proposition 6.4.8. Let Π be a parallelogram in R2 with all four corners in Z2 and area

A. Let P be a non-zero Laurent polynomial in C[x, 1/x, y, 1/y]. Then:

∫∫
Π

log|P (e2πis, e2πit)|dsdt = A ·m(P ) . (6.10)

Before proving this, we state and prove the following useful fact:

Lemma 6.4.9. Let Π be a parallelogram in R2 with all four corners in Z2. Then, the

area of Π, denoted A, is an integer.

Proof. Let v1 and v2 be displacement column vectors of two adjacent sides of Π, and

M be the 2× 2 matrix whose columns are v1 and v2. Then, the area of Π is given by

|det(M)|.

Since the corners of Π are in Z2, it follows that the entries of M are integers, and

hence A ∈ Z.

Proof of Proposition 6.4.8. Firstly, we note that if Π is a rectangle (that is, it has vertical

and horizontal sides), then the result follows immediately from Lemma 6.4.7. However,

the following argument holds whether our parallelogram is a rectangle or not.

For any point x ∈ R2, consider the intersection of x+ Z2 and Π. In this instance,

when we consider Π, we only include one corner and its two adjacent sides, and not the

other two sides, nor the remaining three corners. We treat Π in this way as it will allow

us to then perfectly tile the plane with the parallelogram (each point in the plane would

be covered exactly once). This is visualised in top half of Figure 6.1: we have our point

x, and a resulting lattice-like structure formed by considering x+ Z2. The solid blue

lines are our ‘considered’ sides of Π, with the dashed lines the not-included boundary of

Π. The highlighted red points are precisely the intersection of x+ Z2 and Π.

Claim: The number of points inside the intersection of x+ Z2 and Π is constant.

Justification: As x moves, whenever a point enters Π, this is balanced by a point leaving

Π (and vice versa). This is demonstrated visually in the bottom half of Figure 6.1: we

have shifted x to the right, and see that the same number of points which have entered

Π (as highlighted in green) have also left Π (as highlighted in brown).
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x

The original intersection, before shifting x.

The intersection after shifting x.

x

Figure 6.1: A visualisation of the intersection of x+ Z2 and Π, before and after

shifting x.
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A consequence of this is that, in R2/Z2, each point is covered the same number of

times by the parallelogram, say B times. Then, we have that:

B = B

∫∫
[0,1)2

1 dx dy

=

∫∫
Π

1 dx dy

= A .

(6.11)

Thus, each point is in fact covered A times by the parallelogram. Furthermore, by

Lemma 6.4.9, we know that this is an integer.

Using this and Lemma 6.4.7, it follows that

∫∫
Π

log|P (e2πis, e2πit)|dsdt = A ·m(P ) ,

as required.

This puts us in a position to prove the following result.

Proposition 6.4.10. For a, b, c, d ∈ Z with ad−bc ̸= 0, we have that m(P (xayc, xbyd)) =

m(P (x, y)).

Proof. We write

m(P (xayc, xbyd)) =

∫ 1

t=0

∫ 1

s=0
log|P (e2πi(as+ct), e2πi(bs+dt))| ds dt . (6.12)

Now, putting u = as+ ct and v = bs+ dt, we can calculate the Jacobian determinant of

the above function:

J =

∣∣∣∣∣∣∣
∂u
∂s

∂u
∂t

∂v
∂s

∂v
∂t

∣∣∣∣∣∣∣ = ad− bc .

We next consider the square 0 ≤ s ≤ 1, 0 ≤ t ≤ 1, which has corners with

coordinates (s, t) = (0, 0), (1, 0), (0, 1) and (1, 1). Under our transformation, this

becomes a parallelogram, say Π, in (u, v)-space, which will have corners with coordinates

(u, v) = (0, 0), (a, b), (c, d) and (a+ b, c+ d) respectively. Thus, the area of Π is precisely
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|ad− bc|. So, using (6.12), we get:

m(P (xayc, xbyd)) =

∫∫
Π

log|P (e2πiu, e2πiv)| 1

|ad− bc|
dudv

=
1

|ad− bc|

∫∫
Π

log|P (e2πiu, e2πiv)| dudv

=
1

|ad− bc|
|ad− bc| ·m(P ) , by Proposition 6.4.8,

= m(P ) .

This pushes us a lot of the way to proving Theorem 6.4.5. However, we have so far

only considered values in Z, as opposed to Q. We address this within the proof.

Proof of Theorem 6.4.5. As we know that weakly primitizing a polynomial does not

affect its Mahler measure, we can suppose that P and Q are weakly primitive.

Next, say P (x, y) =
∑

r,s ar,sx
rys, where r, s ∈ Q and ar,s ∈ Z, with only finitely

many ar,s non-zero. As P and Q are equivalent, we can write:

Q(x, y) =
∑
r,s

ar,sx
ar+bs+eycr+ds+f ,

where a, b, c, d, e, f ∈ Q are fixed, and ad− bc ̸= 0.

Now let g and h be the lowest common denominators of a, b, e and c, d, f respectively.

Then, we know in particular that M(Q(x, y)) =M(Q(xg, yh)), by Lemma 6.4.3. Thus,

we get:

M(Q(x, y)) =M(Q(xg, yh))

=M(
∑
r,s

ar,sx
agr+bgs+egychr+dhs+fh)

=M(
∑
r,s

ar,sx
a′r+b′s+e′yc

′r+d′s+f ′

︸ ︷︷ ︸
=Q1(x,y)

) , (6.13)

where a′, b′, c′, d′, e′, f ′ ∈ Z and a′d′ − b′c′ = gh(ad− bc) ̸= 0.
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Next, we multiply Q1(x, y) by x−e′y−f ′ . This does not affect the Mahler, since

M(x−e′y−f ′
) = 1. Hence, we have:

M(Q(x, y)) =M(
∑
r,s

ar,sx
a′r+b′syc

′r+d′s) . (6.14)

We can then apply Proposition 6.4.10 to (6.14) (it follows trivially that the Mahler

measures are equal if the logarithmic Mahler measures are equal). Hence, we have that:

M(Q(x, y)) =M(
∑
r,s

ar,sx
rys)

=M(P (x, y)) ,

(6.15)

as required.

So we now know that if two (two-variable) polynomials are equivalent, they share

the same Mahler measure. This also gives us a level of comfort about our choice of

nomenclature.

6.5 Equivalence in Practice

We now have a definition of equivalence and know that equivalent polynomials share

the same Mahler measure. However, this is only of use to us if we have a method for

checking if two polynomials are equivalent. That is to say, if we have two polynomials P

and Q, we need a way to determine if an affine transformation xrys 7→ xar+bs+eycr+ds+f ,

for a, b, c, d, e, f ∈ Q and ad− bc ̸= 0, taking ±P (±x,±y) to Q(±x,±y), actually exists.

In practice, any method we use should allow us to check if two polynomials are

equivalent, and then if they are, give us an appropriate affine transformation. We first

outline the method which we will use, and then comment on how we can use PARI/GP

to check for equivalences.

6.5.1 A Method for Checking Equivalence

Throughout, we will consider polynomials P (x, y) and Q(x, y), and aim to find if there

is an affine transformation taking ±P (±x,±y) to Q(±x,±y). As our focus has been on
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integer polynomials throughout this thesis, we will assume P,Q ∈ Z[x, y], although we

do not need to make such an assumption in theory.

We will write P (x, y) =
∑
aix

riysi , with ai, ri, si ∈ Z, and where all but finitely many

of the ai are non-zero. For each non-zero ai, we write the powers of the corresponding

monomial in the form of a column vector:ri
si

 .

For convenience, we will refer to these vectors as pi. We similarly write Q(x, y) =∑
bjx

rjysj and write powers of the corresponding monomials of non-zero bj as column

vectors, referred to as qj .

We then fix three monomials from P , p1,p2,p3, such that p1 − p3 and p2 − p3

are linearly independent. These may not be the ‘first’ three monomials as written (as,

depending on how these are written, such monomials may not be suitable), but for

convenience, these can be chosen in most cases. From here, we fix two matrices:

A = (p1 − p3 |p2 − p3) andB = (p1 |p2 |p3) . (6.16)

For avoidance of doubt, A is a 2× 2 matrix, whilst B is a 2× 3 matrix.

We now need to vary over all possible transformations. To do this, we have to look

at all possible triples of monomials from Q, which we write as: q1, q2, q3. For each

possible triple, we calculate:

N = (q1 − q3 |q2 − q3) . (6.17)

We are now in a position to find some of our integer values. In particular, we have

that:

N A−1 =

a b

c d

 . (6.18)

We refer to the matrix found in (6.18) as M . Owing to the conditions of our affine

transformation, we require that M ∈ Mat2(Q) and | det(M) | ≠ 0.
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Assuming these conditions are met, we next set:

n = (q1 |q2 |q3) . (6.19)

We then find the final two values which form our affine transformation:e e e

f f f

 = n−M B . (6.20)

We refer to the matrix found in (6.20) as C.

Combining these results together, this gives us our map: X −→ M X + C which

takes P to Q.

As described up to now, this method does not tell us the signs of the variables within

P and Q for which any affine transformation is valid. However, these are easy to find

once we have found the affine transformation.

Such a method can easily be executed within PARI/GP (and other software programs).

It is straightforward to create a routine which, when given a polynomial, returns the

powers of the monomials as vectors. From here, it is simple to choose suitable p1,p2,p3

such that p1 − p3 and p2 − p3 are linearly independent, and then run over all possible

q1,q2,q3 and return suitable results.

6.5.2 Applying the Method

We now look at an example of how this method works in practice. In particular, we look

at Example 6.4.6 in much more detail:

Example 6.5.1. Let P (x, y) = y8x8 − y8x6 + y5x5 + y3x3 − x2 + 1 and Q(x, y) =

y2x8 + yx8 + yx5 + yx3 + y + 1. In our routine in PARI/GP, we consider these as a

vector of column vector entries, which we write as p and q respectively:
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p =


8

8


6

8


5

5


3

3


2

0


0

0


 ,

q =


8

2


8

1


5

1


3

1


0

1


0

0


 .

We choose p1 =

8

8

, p2 =

6

8

 and p3 =

5

5

, noting that p1 − p3 =

3

3

 and

p2 − p3 =

1

3

 are linearly independent, giving us A =

1 3

3 3

.

By running over all possible combinations for q1,q2 and q3, we find that when we

have:

q1 =

8

2

 , q2 =

0

1

 and q3 =

3

1

 ,

we get an N such that:

N A−1 =

−4 3

−1
2

1
2

 .

Labelling this as M , we note that | det(M) |= 1
2 . As such, we are now in a position to

calculate C:

C =

0 8 3

1 2 1

−

−4 3

−1
2

1
2


8 6 5

8 8 5


=

8 8 8

1 1 1

 .

So, we have that a = −4, b = 3, c = −1
2 , d = 1

2 , e = 8 and f = 1. This gives us the

affine transformation:

xrys 7→ x−4r+3s+8y
−r
2
+ s

2
+1 , (6.21)

as stated earlier, and a short routine can show us that this takes −P (x, y) to Q(x,−y).
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As previously stated, this is not a particularly difficult method to apply, and is very

quick. However, as noted, our routine runs over all possible combinations for q1,q2 and

q3; in other words, all possible triples of monomials from Q. Therefore, it is possible

that there is a different triple of monomials which also gives us an affine transformation.

In fact, since our routine is quick, and does not need to stop after finding a single

affine transformation, we can actually find all possible triples which result in an affine

transformation.

Example 6.5.1 (Continued). With the same p1,p2,p3 as before, the values

q1 =

0

0

 , q2 =

8

1

 and q3 =

5

1

 ,

give us matrices N1 and n1 such that:

M1 = N1A
−1 =

4 −3

1
2 −1

2

 and C =

0 0 0

1 1 1

 .

As a result, this gives as the strikingly similar affine transformation:

xrys 7→ x4r−3sy
r
2
− s

2
+1 ,

which also takes −P (x, y) to Q(x,−y).

We note that the matrix M1 in this second instance is in fact −M from the first

instance of Example 6.5.1. This may come as a surprise at first, however, there is an

explanation for this.

Firstly, we take a closer look at the matrices associated to M and M1. We recall

that we have fixed A, and we have seen that M = −M1. As such, we have that:

M = −M1

NA−1 = −N1A
−1

⇒ N = −N1 .
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That is to say, the matrices formed when we run over all possible triples from our target

polynomial only differ by sign.

This has occurred because our target polynomial is reciprocal. As such, if we have

a monomial represented by the column vector

ri
si

, then there is also a monomial in

our polynomial Q which can be represented by the column vector

rm − ri

sm − si

, where

rm = degx(Q) and sm = degy(Q) (when we consider Q as a linear polynomial with all

powers of all monomial non-negative). This means that if we can find a suitable triple

q1, q2, q3 to give us an N , we can find a second suitable triple to give us −N . As

our focus throughout this thesis has been on reciprocal polynomials, this is a common

occurrence in our examples.

This does not mean that these are necessarily the only other affine transformations

though. Indeed, returning back to Example 6.5.1, we will see that there is indeed a

somewhat different transformation too.

Example 6.5.1 (Continued). Again with the same p1,p2,p3 as in the first instance,

the values

q1 =

8

2

 , q2 =

8

1

 and q3 =

5

1

 ,

give us matrices N and n such that:

N A−1 =

 0 1

−1
2

1
2

 and C =

0 0 0

1 1 1

 .

As a result, this gives us the affine transformation:

xrys 7→ xsy−
r
2
+ s

2
+1 .

which, again, also takes −P (x, y) to Q(x,−y).

This is somewhat more striking. Yet, the key takeaway is that regardless of the

monomials used, and the resulting affine transformation, we are seeing the same adjusted
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version of P being taken to same adjusted version of Q. However, this is not the norm:

indeed, there are situations where we have equivalent polynomials, but there do not

exist these ‘different’ transformations.

Example 6.5.2. Consider Laurent polynomials P (x, y) = y3x3+yx2−x2+y3x−y2x−1

and Q(x, y) = x+ x−1 + y3 + y−3 + yx2 + y−1x−2.

Choosing

p1 =

3

3

 , p2 =

2

1

 and p3 =

2

0

 ,

we get A =

1 0

3 1

.

The vectors:

q1 =

0

3

 , q2 =

−1

0

 and q3 =

−2

−1


give us matrices N and n such that:

M =

−1 1

1 1

 and C =

0 0 0

3 3 3

 .

This gives us an affine transformation mapping xrys 7→ x−r+syr+s−3, taking P (−x, y)

to Q(x,−y).

Meanwhile, the vectors:

q1 =

 0

−3

 , q2 =

1

0

 and q3 =

2

1


give us matrices N1 and n1 such that:

M =

 1 −1

−1 −1

 and C =

 0 0 0

−3 −3 −3

 .

This gives us an affine transformation mapping xrys 7→ xr−sy−r−s+3, which also takes

P (−x, y) to Q(x,−y).
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Example 6.5.2 demonstrates much more intuitively how polynomials which are

reciprocal will give rise to different affine transformations. Moreover, it shows that this

method can also be used for Laurent polynomials. Indeed, it is exploiting this that helps

clearly show why reciprocal polynomials give us these ‘pairs’ of affine transformations.

Equally, it shows a case where we only have one truly different transformation.

6.5.3 Automorphism Groups of Polynomials

We have demonstrated a method which not only can find the associated transformations

between two equivalent polynomials P and Q, but can find all possible transformations

between these polynomials. These transformations will take the same adjusted version

of P to the same adjusted version of Q in each instance.

However, a natural question to ask is what happens if we were to consider the same

polynomial. Indeed, it would be intuitive to say that some polynomial P is equivalent to

itself. From what we have seen so far, though, we cannot say how many different affine

transformations exist which would map P to itself.

Definition 6.5.3. The automorphism group of a polynomial P , denoted Aut(P ),

is the set of affine transformations taking P to P , coupled with the standard composition

operation.

This may seem like a strange piece of nomenclature at first. However, we can see that

the set of any such collection of affine transformations which take P and send it to itself

will form a group, which is a subgroup of the infinite group of affine transformations

over Q. And because these transformations are mapping a polynomial to itself, it is

sensible enough to refer to such a group as an automorphism group.

Example. Let P (x, y) = x+ x−1 + y + y−1 + y4x5 + y−4x−5. We find that there are

exactly two affine transformations which take P (x, y) to P (x, y):

xrys 7→ xrys ;

xrys 7→ x−ry−s .

As such, we have that Aut(P ) ∼= Z/2Z.
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Of course, in this specific Example, it should come as no surprise that these are

indeed two such affine transformations.

Having now seen an example of the automorphism group of a polynomial, it is

reasonable to ask what the purpose of such an object is. In short, the hope would be

that by introducing this, it may give us some further insight for further problems, and

we will refer back to this concept later.

For now, we will look at some more examples. In particular, as our focus is on

polynomials with small Mahler measure, and seeing when polynomials share the same

Mahler measure, we will look at polynomials P ∈ Z[x, y] such that M(P ) is small. We

know that there are currently 61 known small Mahler measure values coming from

polynomials of dimension two. Furthermore, McKee and Smyth, [25, Table D.2] give

reciprocal Laurent polynomials for each of these values. We will make use of these

polynomials in particular for our examples.

Example 6.5.4. Let P (x, y) = x + x−1 + 1 + y + y−1, which has Mahler measure

M(P ) = 1.28573486 · · ·. We have that there are eight affine transformations taking

P (x, y) to P (x, y); these map xrys to one of x±ry±s or x±sy±r.

From here, it is not difficult to see that Aut(P ) ∼= D4, the dihedral group of order 8.

Example. Let P (x, y) = x10 + x−10 + y10 + y−10 + x9y9 + x−9y−9, which has Mahler

measure M(P ) = 1.35246806 · · ·. We have that there are four affine transformations

taking P (x, y) to P (x, y); these map xrys to one of xrys, x−ry−s, xsyr or x−sy−r.

From here, it is not difficult to see that Aut(P ) ∼= V4, the Klein-4 group.

We end by noting that all of the 61 polynomials listed by McKee and Smyth in this

format have automorphism group isomorphic to one of the three groups exhibited here.

More specifically, Example 6.5.4 is the only one of their polynomials with automorphism

group isomorphic to D4, forty-three have automorphism group isomorphic to V4 and the

remaining seventeen have automorphism group isomorphic to Z/2Z.
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6.6 Equivalence II: Longing for More

We have been able to show that if two polynomials are equivalent, they share the same

Mahler measure. This is a useful tool, but there is a perhaps glaring issue with our

definition of equivalence: it relies on the two polynomials having the same number of

monomials. Our affine transformation will map one monomial to another monomial, but

cannot “create” new ones.

To simplify this idea, we introduce the following definition:

Definition 6.6.1. The term-length of a two-variable polynomial P , denoted ℓ(P ), is

the number of (non-zero) monomial terms in P .

So, to re-word the highlighted issue: if P and Q do not have the same term-length,

they cannot be equivalent. So whilst we do have a useful, and powerful, tool for deciding

if two polynomials share the same Mahler measure, we are still a long way off from giving

a complete description of when two two-variable polynomials share the same Mahler

measure (which, of course, is our main goal).

At this point, our concerns about polynomials with different term-length sharing

the same Mahler measure are purely theoretical; we have not seen polynomials P and

Q with ℓ(P ) ̸= ℓ(Q), but M(P ) = M(Q). The following example shows that this is

possible:

Example. Let P (x, y) = y2x4 + (−y2 − y)x3 + yx2 + (−y − 1)x + 1 and Q(x, y) =

y2x8 − yx7 + (−y2 − 1)x4 − yx+ 1.

We have that ℓ(P ) = 7 and ℓ(Q) = 6, and M(P ) =M(Q) = 1.25543386 · · ·.

So, our concern is very much a real one. As such, our main focus now should be

trying to understanding how two polynomials of different term-length can share the

same Mahler measure.

One may wonder if the automorphism groups of polynomials possibly give some

explanation to what is happening here. For example, it may be the case that whenever

M(P ) =M(Q), Aut(P ) ∼= Aut(Q). However, this is not the case:

Example. If we let P (x, y) = y2x4 + (−y2 − y)x3 + yx2 + (−y − 1)x+ 1 and Q(x, y) =

y2x8 − yx7 + (−y2 − 1)x4 − yx+ 1. We have seen from above that it seems to be the
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case that M(P ) =M(Q) (and indeed, we confirm this in Example 6.6.2). However, we

find that Aut(P ) ∼= D6 (the dihedral group of order 12) and Aut(Q) ∼= V4.

6.6.1 A Look at Subsequences

We recall Proposition 1.2.4, which states that:

M(P (x, y)) = lim
n→∞

M(P (x, xn)) . (6.22)

Thinking in these terms, we can consider a sequence of values M(P (x, xn)) for each n,

treating the limit of this sequence as the Mahler measure of the two-variable polynomial.

Since we know our sequence does indeed converge to a limit, we can take any

subsequence, and know that will also converge to the same limit. This somewhat trivial

statement can give us some level of understanding as to why two polynomials of different

term-lengths share the same Mahler measure.

Example 6.6.2. Let P (x, y) = y2x4+(−y2− y)x3+ yx2+(−y− 1)x+1 and Q(x, y) =

y2x8 − yx7 + (−y2 − 1)x4 − yx+ 1, as before.

Now consider M(P (x, xn)) and M(Q(x, xn)) for each n. We look at a selection of

explicit values for some small values of n in each case:

n M(P (x, xn)) n M(Q(x, xn))

1 1.55603019 · · · 3 1.55603019 · · ·

3 1.35098033 · · · 7 1.35098033 · · ·

7 1.21972085 · · · 15 1.21972085 · · ·

10 1.17628081 · · · 21 1.17628081 · · ·

11 1.24949933 · · · 23 1.24949933 · · ·

12 1.26911783 · · · 25 1.26911783 · · ·

These values, and in fact all values we experiment on, give us reason to suspect the

following claim:

M(P (x, xn)) =M(Q(x, x2n+1)) , (6.23)

for each n.
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Of course, at this stage, we are not claiming with absolute certainty that this is

actually true for all n. Rather, we are simply saying that we have the empirical evidence

to suggest that this could be the case.

The importance of (6.23), and the subsequent claim, is that the valuesM(Q(x, x2n+1))

form a subsequence of M(Q(x, xn)). As such, we can make the conclusion that

limn→∞M(Q(x, x2n+1)) = M(Q(x, y)). However, since this subsequence of values

coincides with the sequence of values of M(P (x, xn)), we know that this is the same as

M(P (x, y)). In other words, we can conclude that M(P ) =M(Q).

We now return back to Example 6.6.2, with a view of verifying that (6.23) is true

for all n.

Example 6.6.2 (Continued). We have that:

P (x, xn) = x2n+4 − x2n+3 − xn+3 + xn+2 − xn+1 − x+ 1 ,

Q(x, x2n+1) = x4n+10 − x4n+6 − x2n+8 − x2n+2 − x4 + 1 .

(6.24)

We next note that Q(x, x2n+1) can be factored:

Q(x, x2n+1) = (x2 + 1)
(
x4n+8 − x4n+6 − x2n+6 + x2n+4 − x2n+2 − x2 + 1

)
= (x2 + 1)p(x2) ,

(6.25)

where p(x) = P (x, xn).

We know that M(p(x2)) =M(p(x)), and so not only does this verify M(P (x, xn)) =

M(Q(x, x2n+1)) for each positive integer n, but also gives us a link between the

polynomials themselves. Thus, by our explanation from earlier, we have shown that

M(P ) =M(Q).

This highlights a particularly interesting situation. For the polynomials P and Q,

we have infinitely many situations where (x2 + 1)P (x2, x4n+2) = Q(x, x2n+1). This

phenomenon explains precisely why the values of M(P ) and M(Q) are indeed exactly

the same. The natural next step after seeing this is to ask if this is a one-off coincidence,

or if this is perhaps just one example of something more powerful.

As a matter of fact, we will see that this appears to exhibit something more powerful.
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Before stating the over-arching concept which explains how polynomials of different

term-lengths share the same Mahler measure, we look at some more examples. This will

help give further heuristic justification to our idea when we arrive at it.

Example. Let:

P (x, y) = (y2+y)(x10+x9+x8+x7)+(y2+y+1)(x6+x5+x4)+(y+1)(x3+x2+x+1) ,

Q(x, y) = y2x28 + y2x25 + (−y2 + 1)x14 − yx3 − 1 .

For each n, we have that:

(x− 1)(x+ 1)P (x2, x2n) = Q(x, x2n−3) ,

and so M(P ) =M(Q).

Example 6.6.3. Let:

P (x, y) = x8 + x7 + x6 + x5 + (y2 + y + 1)x4 + y2x3 + y2x2 + y2x+ y2 ,

Q(x, y) = y2x20 + yx11 + (y2 + 1)x10 + yx9 + 1 .

For each n, we have that:

(x2 + 1)P (−x2, x4n) = x8Q(x, x4n−9) . (6.26)

and so M(P ) =M(Q).

This case perhaps looks slightly more convoluted than our previous ones. With Q,

we are simply replacing y with x4n−9, and so find a subsequence of values. With P ,

we first replace y with x2n, also finding a subsequence of values. Then, we replace x

with −x2 (a change which still does not affect the Mahler measure). So, we have that

P (x, x2n) 7→ P (−x2, (−x2)2n) = P (−x2, x4n).

The following is a good start to seeing explicitly that (6.26) does indeed hold,
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although we omit the full calculation:

P (−x2, x4n) = (x8n + x8)(x8 − x6 + x4 − x2 + 1) + x4n+8 ,

Q(x, x4n−9) = x8n+2 + x8n−8 + x4n+2 + x4n + x10 + 1 .

6.6.2 Further Ideas and Examples

The preceding Examples have demonstrated the loose idea which could well describe

when two polynomial share the same Mahler measure. What we have seen is that if we

expect two two-variable polynomials, say P and Q, to share the same Mahler measure,

then we can implement the following strategy:

1. Consider the sequences M(P (x, xn)) and M(Q(x, xn)); these are sequences of

Mahler measure values of single variable polynomials.

2. Attempt to find subsequences of both of these sequences which agree.

3. Attempt to find an equality of polynomials, with suitable substitutions and

Kronecker-cyclotomic factors included, related to these corresponding subsequences.

In practice, it is usually fairly quick and straightforward to find the Mahler measure

of a specific polynomial to a good level of accuracy (as we have seen in chapter 2). As

such, this strategy need only be implemented on polynomials where we expect the Mahler

measure values to be the same. In turn, our attempts to find agreeable subsequences –

if this strategy indeed always works – will be successful.

Moreover, our subsequences have only ever been defined by a linear relation of the

form s1n+ s2, for integers s1 and s2. We have seen situations where we may only need

to find the subsequence of one of our original sequences, and also both. We have also

seen that s2 need not be strictly positive.

When we attempt to find an equality of polynomials related to the corresponding

subsequences, we note that we are restricted to “operations” which do not change

the Mahler measure of a single variable polynomial. This allows us to multiply by

Kronecker-cyclotomic polynomials and either change the sign of a polynomial or the sign

of the variable of a polynomial. Furthermore, since we know that weakly primitizing a
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polynomial does not change the Mahler measure, we can also reverse this process, and

replace x with xt, where t is some positive integer.

We are now in a position to state and prove the following result:

Proposition 6.6.4. Let P and Q be polynomials such that there exists Kronecker-

cyclotomic polynomials κ1 and κ2, and integers t, a1, a2, b1 and b2 such that:

κ1(x)P (±xt,±xa1n+a2) = ±κ2(x)Q(±x,±xb1n+b2) , (6.27)

for each n ∈ N.

Then, M(P ) =M(Q).

Proof. Firstly, we know from Lemma 6.4.2 that for any choice of sign, M(±P (±x,±y)) =

M(P (x, y)) (and similarly for Q). So it suffices to only consider the case where all signs

are +1.

We then make use of Proposition 1.2.4, to give us:

lim
n→∞

M(P (x, xn)) =M(P (x, y)) .

We treat P (x, xn) as a single variable polynomial. We know that replacing x with xt,

for some positive integer t, does not affect the Mahler measure of a polynomial. So,

M(P (x, xn)) =M(P (xt, xnt)). In turn, we have:

lim
n→∞

M(P (xt, xnt)) =M(P (x, y)) . (6.28)

Moreover, we also know that multiplying a polynomial by a Kronecker-cyclotomic

polynomial, say κ1, does not affect the Mahler measure. So, we have that M(P (x, xn)) =

M(κ1(x)P (x
t, xnt)). Therefore,

lim
n→∞

M(κ1(x)P (x
t, xnt)) =M(P (x, y)) .

We now take a subsequence of the natural numbers, say A1n+A2. In turn, we can
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now consider a sequence of values

M
(
κ1(x)P (x

t, x(A1n+A2)t)
)
, (6.29)

which is a subsequence of the sequence of values M
(
κ1(x)P (x

t, xnt)
)
. As we know that

this is a convergent sequence, the sequence of values shown in (6.29) will converge to

the same limit point. This hence gives us:

lim
n→∞

M
(
κ1(x)P (x

t, x(A1n+A2)t)
)
=M(P (x, y)) .

If we now let (A1n+A2)t = a1n+ a2, we can then use (6.27) and (6.28) to find that:

lim
n→∞

M
(
κ2(x)Q(x, xb1n+b2)

)
=M(P (x, y)) , (6.30)

where κ2 is Kronecker-cyclotomic and b1, b2 ∈ Z.

This now gives us the limit of the Mahler measures of polynomials related to Q in

terms of M(P ). However, we can also determine this limit in a different way as well. So,

now let

lim
n→∞

M
(
κ2(x)Q(x, xb1n+b2)

)
= L ,

where L is a limit point value we are attempting to find.

We know that multiplying a polynomial by a Kronecker-cyclotomic polynomial does

not affect the Mahler measure, so we choose to ignore this factor. Thus, we have:

L = lim
n→∞

M
(
Q(x, xb1n+b2)

)
.

Furthermore, we can clearly see that the sequence with values M
(
Q(x, xb1n+b2)

)
is a

subsequence of M (Q(x, xn)). We know that this main sequence converges; in particular:

lim
n→∞

M (Q(x, xn)) =M(Q(x, y)) ,
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and so limn→∞M
(
Q(x, xb1n+b2)

)
=M(Q(x, y)). This therefore gives us that:

L =M(Q(x, y)) .

Combining this with (6.30) shows that M(P ) =M(Q).

This is not the most powerful result, but this is at least a tool we can use to see if

two polynomials do share the same Mahler measure. However, if this fails, we do not

have enough certainty either way to say whether the Mahler measures are different or

not. In turn, we would want to know if the reverse of this statement is true, which would

indeed be a more powerful result too. Unfortunately, this is not the case:

Non-Proposition 6.6.5. If M(P ) = M(Q), then there exists Kronecker-cyclotomic

polynomials κ1 and κ2, and integers t, a1, a2, b1 and b2 such that:

κ1(x)P (±xt,±xa1n+a2) = ±κ2(x)Q(±x,±xb1n+b2) , (6.31)

for each n ∈ N.

We now aim to exhibit a situation showing that this result does not hold.

Example 6.6.6. Let P (x, y) = y8x8 − y8x6 + y5x5 + y3x3 − x2 + 1 and Q(x, y) =

y2x8+yx8+yx5+yx3+y+1. By Example 6.4.6, we know that P and Q are equivalent,

and so M(P ) =M(Q).

Trying to prove that there cannot exist Kronecker-cyclotomic polynomials κ1 and

κ2 and integers t, a1, a2, b1 and b2 such that (6.31) does not hold is a difficult task.

Instead, we take a different, albeit not rigorous, approach.

Consider M(P (x, xi)) and M(Q(x, xj)) for i, j ∈ [1, 150]. In this range, we do not

find any pair of i and j such that M(P (x, xi)) = M(Q(x, xj)). Our ideas related to

when single variable polynomials share the same Mahler measure, as seen in Section

6.1, would suggest that if we did find two polynomials which shared the same Mahler

measure, then we would be able to express them in a form such as in (6.31). However,

as we cannot find two polynomials sharing a Mahler measure, then we cannot express

them in the form of (6.31).
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Exploring over i, j ∈ [1, 150] gives us a level of empirical evidence that we will not

find any polynomials sharing the same Mahler measure. Certainly from a practical

standpoint, if we were to find subsequences of M(P (x, xn)) and M(Q(x, xn)) which were

to coincide, we would expect to find have found one instance within this explored range.

Indeed, for all examples we have seen where there are coinciding subsequences, we do

see evidence of this by exploring over similar ranges.

As such, we have a situation where we have polynomials P and Q such that M(P ) =

M(Q), but we do not expect (6.31) to hold.

There are some obvious issues present in Example 6.6.6. Firstly, it has not been

rigorously shown that Non-Proposition 6.6.5 does indeed fail. Instead, it only presents

evidence – although fairly convincing within context – that it will fail. Secondly, we are

relying somewhat on Open Problem 6.1.1 holding true for the presented evidence to be

convincing. This does mean that whilst, with all information available to us, we do not

expect this to hold, there is an air of uncertainty around our claims.

If Example 6.6.6 was the only situation where we had equivalent polynomials and

could not find suitable Kronecker-cyclotomic polynomials and integers for (6.31) to hold,

this would certainly increase our uncertainty. However, we can find plenty of other

examples where we have equivalent polynomials but are unable to show that they satisfy

(6.31):

Example. The following pairs of polynomials P and Q are equivalent, but do not

appear to satisfy our conditions:

i. P (x, y) = y5x5 + y4x4 − y5x3 + x2 − yx+ 1 ,

Q(x, y) = y2x5 + yx5 − yx4 − yx+ y + 1 .

ii. P (x, y) = y4x2 − y4x+ y3x+ yx− x+ 1 ,

Q(x, y) = y2x4 + yx4 + yx3 + yx+ y + 1 .

This may lead us to consider the possibility that potential results depend entirely

on if the term-lengths of our polynomials are the same. In other words, the reverse of

Proposition 6.6.4 may only hold when ℓ(P ) ̸= ℓ(Q). However, this is not the case:
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Example 6.6.7. Let

P (x, y) = y2x6 + yx6 + y2x5 + x+ y + 1 ;

Q(x, y) = yx6 + y + y2x3 + x3 + y2x4 + x2 .

We find that P and Q are equivalent; for example, we have the affine transformation

xrys 7→ x−r+2s+4y−s+2 taking P (x, y) to Q(x, y). Furthermore we have that:

x2P (x, xn) = Q(x, xn+2) .

So, Example 6.6.7 dispels the possibility that our introduced notion of equivalence is

mutually exclusive with the concept we have introduced here. Unfortunately, this is of

little solace to us.

6.6.3 To Equivalence and Beyond

We end this chapter by posing open problems which relate to the topic of when two

two-variable polynomials share the same Mahler measure. These, in turn, give a summary

of the work seen so far, and the issues encountered.

Open Problem 6.6.8. Let P,Q ∈ Z[x, y]. Is there a way to determine if M(P ) =

M(Q)?

We have gone some way into answering this problem, by introducing our notion

of equivalence, as well as going further by looking at subsequences of Mahler measure

values. However, we do not know if these encapsulate all situations; there may be other

ways to determine equality of Mahler measures.

Open Problem 6.6.9. Let P,Q ∈ Z[x, y] and M(P ) =M(Q). Are P and Q, in some

sense, the same?

This is a vaguer statement, and in many ways, just posing Open Problem 6.6.8 in

a different way. However, this statement is an attempt at mirroring the statement of

Open Problem 6.1.1. Our main problem for single variable polynomials gives a list

of conditions on polynomials f and g which we believe guarantee that M(f) ̸=M(g).
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In other words, if M(f) = M(g), then the polynomials are “the same”, up to these

conditions.

Open Problem 6.6.9 asks if there is a similar formulation for two-variable polynomials.

That is, if we have polynomials P and Q, then the polynomials are “the same”, up to a

set of given conditions. Based on our work so far, a more precise formulation of this

statement would be:

Open Problem 6.6.10. Let P,Q ∈ Z[x, y] and M(P ) =M(Q). Then, at least one of

the following holds:

1. P and Q are equivalent.

2. There exist Kronecker-cyclotomic polynomials κ1 and κ2, and integers t, a1, a2, b1

and b2 such that (6.27) holds for each n ∈ N.

The wording of this Open Problem is somewhat daring, as we are suggesting that

there are only two possible scenarios which explain when two-variable polynomials share

the same Mahler measure. However, our evidence for this is that in every case where we

found M(P ) =M(Q) numerically, at least one of the two conditions in Open Problem

6.6.10 has been found to hold. This certainly gives us reason to believe that the statement

as presented could indeed be true.



Chapter 7

An Epic Epilogue of Open Problems

To round off, we present a selection of Open Problems and unanswered questions which

have been posed throughout. There is no new content introduced here; rather, we aim to

summarize everything we have not been able to fully answer, and questions which were

beyond the scope of this thesis. However, some of these questions / problems may not

have been explicitly stated previously. We make reference back to appropriate Sections

for each point raised.

In doing this, we make clear potential avenues for future work following from this

thesis.

7.1 Calculating Mahler Measures

Broadly speaking, the central concern and motivation for studying Mahler measures has

been Lehmer’s Problem:

Conjecture 7.1.1 (See Conjecture 1.1.10, in Section 1.1.1). For all polynomials f ∈ Z[x]

such that M(f) is non-trivial, we have that M(f) ≥ 1.17628081 · · · = λ.

This thesis has not attempted to prove or disprove this. However, we hope that

some of the results and ideas introduced provide some additional context and support

for believing this to be true.

Question 7.1.2 (See Sections 1.1.1 and 5.3.1). Can we find any new small Mahler

measure values from single variable polynomials?
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We have been able to find a new small Mahler measure value: 1.252826882865 · · ·.

Whilst our aim was not specifically to find new small Mahler measures, it is certainly a

nice by-product of our work, and any future experimental work that may follow!

Question 7.1.3 (See Section 1.2.1). Is the list of tiny Mahler measures complete?

Question 7.1.4 (See Section 1.2.1). Is the list of small limit points of Mahler measures

complete?

Again, this thesis has not attempted to answer these questions directly. However,

our experiments have given us a different way of finding these values, and at the very

least, help convince us that the lists are likely near-complete, if not already.

Question 7.1.5 (See Section 2.2). Can we improve upon methods for calculating the

Mahler measure of two-variable polynomials?

We presented a new method for calculating the Mahler measures of two-variable

polynomials (albeit one which is only applicable for reciprocal polynomials), which is

quick and efficient. It would be useful to know if we can improve this, or one of the

other known methods, to have a more general, quicker and more efficient method.

7.2 Mahler Measures and Digraphs

Open Problem 7.2.1 (See Section 3.3.1). Can we give a classification of all cyclotomic

(charged signed) digraphs?

We have seen that we have a classification of cyclotomic charged signed graphs, but

a classification remains unknown when we extend to digraphs.

Question 7.2.2 (See Sections 4.4 and 5.4). Can we create and implement an efficient

routine which calculates the Mahler measures of “bridged digraphs”, and families of

bridged digraphs?

We extended our construction of growing digraphs to, effectively, attach digraphs to

the ends of pendant paths which themselves are already attached to a ‘central’ digraph.

We chose not to experiment with this construction, partially because of the difficulty
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of implementing it. However, if this could be implemented successfully, it may help

improve the results presented within this thesis.

Question 7.2.3 (See Section 5.3.1). Can we find all tiny Mahler measures from digraphs?

Further, can we find all known small Mahler measures (whose associated polynomial is

of degree at most 180) from digraphs?

Question 7.2.4 (See Section 5.3.2). Can we find all small limit points of Mahler

measures from digraphs?

Our experiments have found all but one of the (known) tiny Mahler measures,

approximately 97% of the known small Mahler measures whose associated polynomial

is of degree at most 180 and all but four of the (known) small limit points of Mahler

measures. This included one new small Mahler measure value. With access to more

powerful computers, more efficient routines and more time, we may be able to find the

remaining known values, and possibly even more new values.

7.3 Polynomials with the Same Mahler Measures

Open Problem 7.3.1 (See Open Problem 6.1.1, in Section 6.1). Let f, g ∈ Z[x] be

monic, weakly primitive, irreducible, reciprocal polynomials, with non-trivial Mahler

measures.

Is it the case that M(f) ̸=M(g)?

Open Problem 7.3.2 (See Open Problem 6.2.6, in Section 6.2). Let f, g ∈ Z[x] be

monic, weakly primitive, irreducible, reciprocal polynomials, with non-trivial Mahler

measures. Let f have exactly one large zero and be the polynomial of least degree with

Mahler measure M(f), and g have exactly two large zeros.

Is it the case that M(f) ̸=M(g)?

Question 7.3.3. Can we answer Open Problem 6.2.6 for f having n large zeros and g

having m large zeros, for other fixed values n and m?

We have justified our reasoning for these stating these problems with these conditions,

and have sufficient empirical evidence to believe that these will be true. However, we
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still have yet to be able to prove any of these statements. We expect that Question 7.3.3

can only be properly posed and answered if we get an answer to Open Problem 6.2.6.

Question 7.3.4 (See Section 6.5.3). Can the automorphism group of a (two-variable)

polynomial be used to greater effect than already presented?

We introduce the concept of an automorphism group of a polynomial, in hope that

it may help give us further insight to other problems. Unfortunately, it does not give us

much in the way of answering any questions and problems we raise. On the other hand,

we hope that there may be some use to the concept, or a possible related concept.

Question 7.3.5 (See Open Problems 6.6.8, 6.6.9 and 6.6.10 in Section 6.6.3). Let P

and Q be two-variable polynomials such that M(P ) =M(Q). Are there conditions on P

and Q which can explain this?

The question of when two two-variable polynomials share the same Mahler measure

has proved to be significantly more involved than the single variable scenario. There are

many ways of posing and attempt to answer this general question, and our ideas give a

possible explanation, and are supported again by a plethora of empirical evidence.
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Knot Theory: Tying Up Loose Ends

Here, we aim to give a brief overview of what the pretzel knot is, what it looks like

and a definition of the Alexander polynomial, to help aid with the visualisation and

understanding of Section 1.3.1. We do not go into the intricate nature of the field; this

is here to just give a high level, almost crude, overview for the unfamiliar reader.

A knot, K, is a loop in 3-space without self-intersections. In practice, we can think

of it like a piece of string. A twist is a counter-clockwise movement involving two

separate sections of a curve, causing them to overlap. Very crudely speaking, if we were

to hold two different pieces of a string, one piece in each hand, a twist would involve us

overlapping the piece of string in our right hand over the piece of string in our left (this

is a counter-clockwise movement). We can make multiple twists, with the convention

that after one twist, the ‘left’ and ‘right’ pieces of string have now swapped, and as such

have swapped hands. We can also make a negative number of twists, which involves a

clockwise movement, rather than counter-clockwise (moving our left hand over our right

hand).

The pretzel knot is a special example of a knot, which is split into n different

sections, called tangles. This can be written as PK(k1, k2, · · · , kn), where the ki represent

the number of twists in i-th tangle. So, for example, the following is PK(−2, 3, 7):
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Figure A.1: The pretzel knot PK(−2, 3, 7).

When we are presented with a diagram of a knot, we make reference to a crossing

within the knot: this is when a section of the knot goes above another section of the

knot. In a sense, it is a section of the knot which has been twisted. The Alexander

polynomial of a knot K, denoted by ∆K , is a polynomial that is determined by the

number of crossings made in the knot.

Due to the nature of the Alexander polynomial, there is no closed formula for

calculating the Alexander polynomial of a pretzel knot. This means that there can be a

sense of volatility with the Alexander polynomial of any knot, including those of interest

to us, the pretzel knots PK(k1, · · · , kn), This gives us no guarantees that the polynomial

will follow any set pattern or shape.

As such, we give a worked example on how to calculate the Alexander polynomial for

a small knot. In short, the method one follows for determining the Alexander polynomial

of a knot K is as follows:

1. Choose an orientation for our knot (a way to follow the loop),
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2. Label each crossing in our knot 1, · · · , n,

3. Construct an n× n matrix, labelled MK , in the following manner:

a. At crossing i, identify the first crossing to the left of i, which will be labelled

j, where j ̸= i,

b. At crossing i, identify the first crossing to the right of i, which will be labelled

k, where k ̸= i and k ̸= j,

c. The (i, i)-entry of MK is given value 1− t,

d. The (i, j)-entry of MK is given value t,

e. The (i, k)-entry of MK is given value −1,

f. All other entries in row i are given value 0.

4. Delete the last row and column of MK , to give an (n− 1)× (n− 1) matrix, say

NK ,

5. Set ∆K(t) = det(NK); this is the Alexander polynomial of K.

We note that this method involves making various choices (such as orientation, the

labelling of the crossings and so forth). The Alexander polynomial is invariant of these

choices; a fact we do not prove, but can be found in any introductory text book about

knot theory (see, for example, Reidemeister [32]).

Example A.0.1. Let K be the “figure eight knot”, as shown in Figure A.2. We note

that we have given this an orientation, marked by the arrowhead, and labelled the

crossings. In particular, our crossings have been labelled in a sort of consecutive manner

of how they appear when following the loop, though there is no need to actually do this

in practice.
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Figure A.2: The figure eight knot.

We now begin to construct our matrix MK . We will explicitly look at how we

construct the first row, and then just state the rest. Starting at crossing 1, we see that

following our orientation means we would be ‘facing down’. Thus, the first crossing to

the left of crossing 1 we encounter is crossing 4, whilst the first crossing to the right of

crossing 1 we encounter is crossing 3.

So, we have that the (1, 1)-entry of MK is 1− t, the (1, 4)-entry is t and finally the

(1, 3)-entry is −1. The remaining entries in the first row are zero, which in this case is

just the (1, 2)-entry.

Repeating the procedure at each crossing gives us:

MK =



1− t 0 −1 t

−1 1− t 0 t

−1 t 1− t 0

0 t −1 1− t


.

Deleting the last row and column of MK gives us:

NK =


1− t 0 −1

−1 1− t 0

−1 t 1− t

 .
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Finally, we have that:

∆K(t) = −t3 + 3t2 − t

= t2
(
−t+ 3− 1

t

)
.

We note that when we calculated the Alexander polynomial in this case, we had a

linear polynomial where all powers of t were non-negative. However, we also presented a

version where we factored out a suitable power of t so that we have a Laurent polynomial

whose powers are symmetric about the t0 term. This follows the convention when

working with Alexander polynomials, and some authors may refer to this specific Laurent

polynomial as the Alexander polynomial of the knot.

As mentioned in Section 1.3.1, studying the Alexander polynomials of pretzel knots

is of particular interest to us in the context of Mahler measures. As mentioned, the

Alexander polynomials of PK(−2, 3, 3) and PK(−2, 3, 5) are Kronecker-cyclotomic, whilst

the Alexander polynomial of PK(−2, 3, 7) is Λ(−t) (when we write these as linear

polynomials, as opposed to Laurent polynomials). However, due to the lack of closed

formula, this is a less productive method for trying to find objects which we can associate

polynomials to to find small Mahler measures compared to our work surrounding digraphs,

as we see through this thesis.
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Lattices: Connecting the Dots

Here, we give an overview of the key definitions and concepts of lattices needed from

Section 2.4.1. We do not go into the intricate nature of the field; this is here to just give

a high level, almost crude, overview for the unfamiliar reader

A lattice, L, is a set of points in n-dimensional space with a periodic structure.

Perhaps the simplest example to consider is Zn (in Rn); n-dimensional vectors with

integer entries. More formally, given m linearly independent vectors b1, · · · , bm ∈ Rn,

for m ≤ n, we can generate a lattice with them, defined to be:

L = L(b1, · · · , bm) =

{∑
m

xibi |xi ∈ Z

}
,

where we call these vectors the basis of the lattice L, and denote this as B. Following

the notation from this more formal set up, we say that the dimension of a lattice is the

value n, and the rank is the value m.

We note that a consequence of our definition is that every lattice necessarily has a basis.

However, the basis of a lattice usually is not unique. For example, B1 = {(1, 0), (0, 1)}

and B2 = {(1, 1), (2, 1)} are both bases for Z2, viewed as a lattice over R2.

For a lattice L with a given basis B, we can look to “reduce” the basis B. The

method of reduction of interest to use is the LLL reduction method, first introduced

by Lenstra et al. [18], which we detail shortly.

Before detailing the LLL reduction of a basis, we state the known Gram-Schmidt
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process, which gives us an orthogonalization of a basis. For a basis B = {b1, · · · , bm},

define vectors bi∗ inductively by:

bi
∗ = bi −

i−1∑
j=1

νi,jbj
∗ ,

where:

νi,j =
⟨bi, bj∗⟩
⟨bj∗, bj∗⟩

, (B.1)

with ⟨·, ·⟩ representing the standard inner product on Rn. We call the vectors B∗ =

{b1∗, · · · , bn∗} the corresponding Gram-Schmidt orthogonal basis.

We are now in a position to define what an LLL reduced basis of a lattice L is. Let

B = {b1, · · · , bm} be a basis of L and B∗ = {b1∗, · · · , bn∗} be its orthogonal basis, with

νi,j as defined in (B.1). Then, B is an LLL reduced basis if:

1. |νi,j | ≤ 1
2 , for 1 ≤ j < i ≤ m,

2. |bi∗ + νi,i−1bi−1
∗|2 ≥ 3

4 |bi−1
∗|2 , for 1 < i ≤ m.

If our basis B is not LLL reduced, then we can use an algorithm proposed by Lenstra

et al. [18] to find an LLL reduced basis – the LLL algorithm – to find one in polynomial

time. This algorithm is well known and used. For example, in PARI/GP, we have the

command qflll to return a marix we can be used to find an LLL reduced basis.
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Cyclotomic Charged Signed Graphs

In Theorems 3.3.3 and 3.3.4, we stated every maximal connected cyclotomic signed

graph and every maximal connected cyclotomic charged signed graph respectively. After

stating these, we only included figures of the charged signed graphs which were necessary

for work which followed within the thesis. Here, we include figures for the remaining

ones.

As with the statements themselves, these figures appear in McKee and Smyth [23].

They are included here for easy reference and a sense of completeness.

· · ·

v

w

v

w

Figure C.1: The signed graph T2k, with 2k vertices, for k ≥ 3.

Remark. In Figure C.1, we have copies of the vertices v and w. These are identified

and are the same vertex.
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Figure C.2: The signed graph S14, with 14 vertices.

Figure C.3: The signed graph S16, with 16 vertices.
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+

− +

+

S7

− +

+ −

+ −

− +

S8

−

+

+

−

S′
8

Figure C.4: The three sporadic maximal charged signed graphs S7, S8 and S′
8.



Appendix D

Table of Small Limits Points

ℓ1, r1 ℓ2, r2 cℓ, cr u, d ℓ, m Limit point

DL, DR cm r, n

−1, −1 1, −1 0, 0 t+ 1, 0t+ 2 1.25543386 · · ·

−, • 2t, −1

−1, −1 1, −1 0, 0 t, 0t+ 2 1.28573486 · · ·

+, + 3t+ 4, −1

−1, 0 0, −1 −1, 0 0, −1 0t+ 0, t+ 0 1.30909838 · · ·

−, < 0 0t+ 1, 1

−1, −1 1, −1 0, 0 2t+ 2, 0t+ 2 1.31569270 · · ·

•, − 3t+ 2, −1

0, −1 0, −1 0, 0 t+ 0, 0t+ 2 1.32471795 · · ·

+, + t+ 0, −1

−1, −1 1, −1 0, 0 t+ 1, 0t+ 2 1.32537249 · · ·

+, + 3t+ 2, −1

−1, −1 1, −1 0, 0 t+ 1, 0t+ 4 1.33205110 · · ·

•, • 2t+ 1, −1

−1, −1 1, 0 0, 0 t+ 0, 0t+ 5 1.33239612 · · ·

−, + 3t+ 1, −1
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ℓ1, r1 ℓ2, r2 cℓ, cr u, d ℓ, m Limit point

DL, DR cm r, n

−1, −1 1, −1 0, 0 t+ 1, 0t+ 5 1.33813743 · · ·

+, + 3t+ 2, −1

−1, −1 −1, 0 0, 0 1, 0 0t+ 0, t+ 0 1.33999992 · · ·

•, − 0t+ 1, 0

−1, −1 1, −1 0, 0 t+ 0, 0t+ 2 1.34050688 · · ·

+, + 2t+ 2, −1

−1, −1 1, 0 0, 0 t+ 1, 0t+ 5 1.34865199 · · ·

−, − 3t+ 1, −1

−1, 0 0, −1 0, 0 1, 1 0t+ 2, 0t+ 2 1.34971610 · · ·

•, − t− 1, 0

−1, 0 0, −1 −1, 1 0, 1 0t+ 1, t+ 0 1.35001483 · · ·

−, + 0t+ 1, 0

−1, −1 1, 0 0, 0 t+ 0, 0t+ 5 1.35031697 · · ·

−, • 4t+ 5, −1

−1, −1 1, 0 0, 0 t+ 1, 0t+ 5 1.35114589 · · ·

−, • 4t+ 1, −1

−1, −1 1, 0 0, 0 4t+ 3, 0t+ 5 1.35246806 · · ·

•, • 5t+ 0, −1

−1, −1 1, 0 0, 0 t+ 0, 0t+ 5 1.35369764 · · ·

−, + t+ 4, −1

−1, −1 −1, 0 −1, 0 −1, 0 0t+ 0, 2t+ 0 1.35674810 · · ·

•, + t+ 1, 0

−1, −1 1, −1 0, 0 3t+ 1, 0t+ 2 1.35678598 · · ·

+, + 5t+ 0, −1

−1, −1 1, −1 0, 0 3t+ 1, 0t+ 2 1.35854559 · · ·

+, + 5t+ 3, −1
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ℓ1, r1 ℓ2, r2 cℓ, cr u, d ℓ, m Limit point

DL, DR cm r, n

−1, −1 −1, 0 0, 0 1, 0 0t+ 0, t+ 0 1.35920806 · · ·

•, + 0t+ 2, 0

−1, −1 1, 0 0, 0 t+ 1, 0t+ 5 1.35937564 · · ·

•, − 2t+ 0, −1

−1, −1 1, 0 0, 0 5t+ 4, 0t+ 5 1.35981177 · · ·

•, • 6t+ 1, −1

−1, −1 1, 0 0, 0 t+ 0, 0t+ 5 1.35981589 · · ·

−, • 6t+ 5, −1

−1, −1 −1, 0 0, 0 −1, −1 0t+ 0, 0t+ 7 1.35991414 · · ·

•, + t− 1, 0

−1, 0 0, −1 −1, 1 0, −1 0t+ 1, t+ 0 1.36022084 · · ·

−, + 0 0t+ 0, 1

−1, −1 −1, 0 0, 0 1, 0 0t+ 0, t+ 7 1.36195645 · · ·

•, + 3t− 2, 0

−1, −1 1, −1 0, 0 t+ 0, 0t+ 2 1.36272428 · · ·

+, + 5t+ 0, −1

−1, −1 1, 0 0, 0 5t+ 5, 0t+ 5 1.36365149 · · ·

−, + 3t+ 0, −1

−1, −1 1, 0 0, 0 2t+ 1, 0t+ 5 1.36419954 · · ·

•, − 3t+ 0, −1

−1, −1 1, −1 0, 0 t, 0t+ 2 1.36443581 · · ·

+, + 2t+ 1, −1

−1, 0 0, −1 −1, 1 0, −1 0t+ 3, t+ 0 1.36465572 · · ·

−, + 0 0t+ 0, 1

−1, 0 0, −1 −1, −1 0t+ 3, t− 2 1.36506231 · · ·

+, + t+ 0, t+ 3
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ℓ1, r1 ℓ2, r2 cℓ, cr u, d ℓ, m Limit point

DL, DR cm r, n

−1, −1 1, −1 0, 0 4t+ 3, 0t+ 2 1.36526954 · · ·

•, − 5t+ 1, −1

−1, 0 0, −1 −1, 1 −1, −1 2t− 2, 0t+ 5 1.36546873 · · ·

•, + t+ 0, 0

−1, 0 0, −1 −1, 1 0, −1 0t+ 0, t+ 0 1.36614596 · · ·

−, + 0 0t+ 0, 1

−1, −1 1, −1 0, 0 t+ 0, 0t+ 2 1.36629907 · · ·

+, + 5t+ 3, −1

−1, −1 1, 0 0, 0 3t+ 0, 0t+ 5 1.36640199 · · ·

−, • 2t+ 0, −1

−1, −1 1, 0 0, 0 2t+ 0, 0t+ 5 1.36643553 · · ·

•, − t+ 1, −1

−1, 0 0, −1 −1, 1 0, −1 0t+ 0, t+ 0 1.36657097 · · ·

•, + 0 0t+ 0, 1

−1, −1 1, −1 0, 0 2t+ 2, 0t+ 2 1.36680788 · · ·

+, + 3t+ 4, −1

−1, −1 1, −1 0, 0 t+ 1, 0t+ 6 1.36688307 · · ·

+, + t+ 2, −1

−1, 0 0, −1 −1, −1 0t+ 2, t+ 1 1.36699091 · · ·

−, • 0t+ 5, 0t+ 6

−1, −1 1, 0 0, 0 t+ 1, 0t+ 5 1.36751103 · · ·

−, • 4t+ 2, −1

−1, 0 0, −1 0, 0 −1, −1 t+ 2, t− 3 1.36779885 · · ·

−, − 0 0t+ 5, 1

−1, 0 0, −1 −1, 1 −1, −1 t− 1, 0t+ 8 1.36785463 · · ·

−, • 0t+ 0, 0
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ℓ1, r1 ℓ2, r2 cℓ, cr u, d ℓ, m Limit point

DL, DR cm r, n

−1, 1 1, 0 1, 1 1, 1 0t+ 1, 0t+ 1 1.36813222 · · ·

−, • t− 1, 0

−1, 0 0, −1 0, 0 −1, −1 t+ 2, 2t− 2 1.36819625 · · ·

•, + 0t+ 7, 0

−1, −1 −1, 0 0, 1 −1, −1 0t+ 0, t+ 0 1.36821400 · · ·

•, + 0t+ 2, 0

−1, 0 0, −1 1, 0 0, −1 0t+ 4, t+ 0 1.36834343 · · ·

>, < −1 0t+ 1, 1

−1, −1 1, −1 0, 0 3t+ 0, 0t+ 2 1.36839671 · · ·

+, + 5t+ 2, −1

−1, 0 0, −1 0, 0 1, 1 0t+ 4, 2t+ 0 1.36874744 · · ·

−, • t+ 2, 0

−1, −1 1, 0 0, 0 3t+ 1, 0t+ 5 1.36892221 · · ·

•, − 2t+ 0, −1

−1, −1 1, 0 0, 0 t+ 2, 0t+ 5 1.36897873 · · ·

−, + 3t+ 0, −1

−1, 0 0, −1 −1, −1 t− 1, 0t+ 2 1.36948937 · · ·

+, < 3t+ 1, 2t+ 1

−1, 0 0, −1 −1, 1 0, −1 0t+ 0, t+ 1 1.36978231 · · ·

+, < 0 4t− 2, 1

Table D.1: Small limits of sequences of Mahler measures from families of digraphs.

This Table exhibits families of digraphs which have small limit points of Mahler

measures, where small here is taken to mean “less than 1.37”. For a full understanding

of how to read the Table, see Section 5.3.2.
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basal irreducible, 198

bridge, 151

charged pendant path, 108

charged signed digraph, 78

coalescence, 151

complex conjugate (of a polynomial), 41

contraction, 142

core digraph, 172

cyclotomic, 19

cyclotomic graph, 74

decorated pendant path, 129

degree (of a vertex), 101

deletion (multiedge), 141

deletion (vertex), 142

digraph, 78

digraph; Z-weighted, 141

dimension (of a polynomial), 63

dimension (of a value), 64

equal digraphs, 99

equivalent (digraphs), 104

equivalent (polynomials), 207

exponent polytope, 63

good choice of digraph, 170

graph, 68

group extension, 201

hyperplane, 177

incident, 100

induced subgraph, 71

interlace, 71

knot, 237

large zero, 197

lattice, 242

LLL reduced basis, 243

Mahler measure (of a graph), 31

Mahler measure (of a single variable

polynomial), 15
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negative of a digraph, 102

non-trivial (Mahler measure), 20

nudge, 165

pendant path, 107

Pisot number, 23

rank (of a lattice), 242

reciprocal polynomial (n-variables), 42

reciprocal polynomial (single variable),

21

Salem number, 21

sign switch, 97

signed multiedge, 141

simple graph, 69

small Mahler measure, 24

split (extension), 201

strongly primitive, 54

strongly primitize, 55

subdivision, 109

switch equivalent, 97

symmetrizable, 96

term-length, 222

tiny Mahler measure, 29

total degree, 52

totally negative, 82

totally positive, 81

trace polynomial, 201

weakly primitive, 56

weakly primitize, 56
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